Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 36

1.

Widespread Prion-Based Control of Growth and Differentiation Strategies in Saccharomyces cerevisiae.

Itakura AK, Chakravarty AK, Jakobson CM, Jarosz DF.

Mol Cell. 2019 Nov 14. pii: S1097-2765(19)30805-6. doi: 10.1016/j.molcel.2019.10.027. [Epub ahead of print]

PMID:
31757756
2.

A Non-amyloid Prion Particle that Activates a Heritable Gene Expression Program.

Chakravarty AK, Smejkal T, Itakura AK, Garcia DM, Jarosz DF.

Mol Cell. 2019 Nov 13. pii: S1097-2765(19)30806-8. doi: 10.1016/j.molcel.2019.10.028. [Epub ahead of print]

PMID:
31757755
3.

Molecular Origins of Complex Heritability in Natural Genotype-to-Phenotype Relationships.

Jakobson CM, Jarosz DF.

Cell Syst. 2019 May 22;8(5):363-379.e3. doi: 10.1016/j.cels.2019.04.002. Epub 2019 May 1.

PMID:
31054809
4.

Pervasive function and evidence for selection across standing genetic variation in S. cerevisiae.

Jakobson CM, She R, Jarosz DF.

Nat Commun. 2019 Mar 15;10(1):1222. doi: 10.1038/s41467-019-09166-1.

5.

Mutations, protein homeostasis, and epigenetic control of genome integrity.

Xie JL, Jarosz DF.

DNA Repair (Amst). 2018 Nov;71:23-32. doi: 10.1016/j.dnarep.2018.08.004. Epub 2018 Aug 23. Review.

6.

More than Just a Phase: Prions at the Crossroads of Epigenetic Inheritance and Evolutionary Change.

Chakravarty AK, Jarosz DF.

J Mol Biol. 2018 Nov 2;430(23):4607-4618. doi: 10.1016/j.jmb.2018.07.017. Epub 2018 Jul 19. Review.

7.

It's not magic - Hsp90 and its effects on genetic and epigenetic variation.

Zabinsky RA, Mason GA, Queitsch C, Jarosz DF.

Semin Cell Dev Biol. 2019 Apr;88:21-35. doi: 10.1016/j.semcdb.2018.05.015. Epub 2018 Jun 6. Review.

PMID:
29807130
8.

Organizing biochemistry in space and time using prion-like self-assembly.

Jakobson CM, Jarosz DF.

Curr Opin Syst Biol. 2018 Apr;8:16-24. doi: 10.1016/j.coisb.2017.11.012. Epub 2017 Dec 6.

9.

It Pays To Be in Phase.

Itakura AK, Futia RA, Jarosz DF.

Biochemistry. 2018 May 1;57(17):2520-2529. doi: 10.1021/acs.biochem.8b00205. Epub 2018 Mar 13. Review.

10.

Mapping Causal Variants with Single-Nucleotide Resolution Reveals Biochemical Drivers of Phenotypic Change.

She R, Jarosz DF.

Cell. 2018 Jan 25;172(3):478-490.e15. doi: 10.1016/j.cell.2017.12.015.

11.

Protein-Based Inheritance: Epigenetics beyond the Chromosome.

Harvey ZH, Chen Y, Jarosz DF.

Mol Cell. 2018 Jan 18;69(2):195-202. doi: 10.1016/j.molcel.2017.10.030. Epub 2017 Nov 16. Review.

12.

Specification of Physiologic and Disease States by Distinct Proteins and Protein Conformations.

Jarosz DF, Khurana V.

Cell. 2017 Nov 16;171(5):1001-1014. doi: 10.1016/j.cell.2017.10.047. Review.

13.

High-throughput Screening for Protein-based Inheritance in S. cerevisiae.

Byers JS, Jarosz DF.

J Vis Exp. 2017 Aug 8;(126). doi: 10.3791/56069.

14.

Comprehensive and quantitative mapping of RNA-protein interactions across a transcribed eukaryotic genome.

She R, Chakravarty AK, Layton CJ, Chircus LM, Andreasson JO, Damaraju N, McMahon PL, Buenrostro JD, Jarosz DF, Greenleaf WJ.

Proc Natl Acad Sci U S A. 2017 Apr 4;114(14):3619-3624. doi: 10.1073/pnas.1618370114. Epub 2017 Mar 21.

15.

Old moms say, no Sir.

Gitler AD, Jarosz DF.

Science. 2017 Mar 17;355(6330):1126-1127. doi: 10.1126/science.aam9740. Epub 2017 Mar 16. No abstract available.

PMID:
28302810
16.

Amyloid Prions in Fungi.

Saupe SJ, Jarosz DF, True HL.

Microbiol Spectr. 2016 Dec;4(6). doi: 10.1128/microbiolspec.FUNK-0029-2016. Review.

PMID:
28087950
17.

A common bacterial metabolite elicits prion-based bypass of glucose repression.

Garcia DM, Dietrich D, Clardy J, Jarosz DF.

Elife. 2016 Nov 29;5. pii: e17978. doi: 10.7554/eLife.17978.

18.

Intrinsically Disordered Proteins Drive Emergence and Inheritance of Biological Traits.

Chakrabortee S, Byers JS, Jones S, Garcia DM, Bhullar B, Chang A, She R, Lee L, Fremin B, Lindquist S, Jarosz DF.

Cell. 2016 Oct 6;167(2):369-381.e12. doi: 10.1016/j.cell.2016.09.017. Epub 2016 Sep 29.

19.

Rebels with a cause: molecular features and physiological consequences of yeast prions.

Garcia DM, Jarosz DF.

FEMS Yeast Res. 2014 Feb;14(1):136-47. Review.

20.

Cross-kingdom chemical communication drives a heritable, mutually beneficial prion-based transformation of metabolism.

Jarosz DF, Brown JCS, Walker GA, Datta MS, Ung WL, Lancaster AK, Rotem A, Chang A, Newby GA, Weitz DA, Bisson LF, Lindquist S.

Cell. 2014 Aug 28;158(5):1083-1093. doi: 10.1016/j.cell.2014.07.025.

21.

An evolutionarily conserved prion-like element converts wild fungi from metabolic specialists to generalists.

Jarosz DF, Lancaster AK, Brown JCS, Lindquist S.

Cell. 2014 Aug 28;158(5):1072-1082. doi: 10.1016/j.cell.2014.07.024.

22.

Pernicious pathogens or expedient elements of inheritance: the significance of yeast prions.

Byers JS, Jarosz DF.

PLoS Pathog. 2014 Apr 10;10(4):e1003992. doi: 10.1371/journal.ppat.1003992. eCollection 2014 Apr. Review. No abstract available.

23.

Cryptic variation in morphological evolution: HSP90 as a capacitor for loss of eyes in cavefish.

Rohner N, Jarosz DF, Kowalko JE, Yoshizawa M, Jeffery WR, Borowsky RL, Lindquist S, Tabin CJ.

Science. 2013 Dec 13;342(6164):1372-5. doi: 10.1126/science.1240276.

24.

Prions are a common mechanism for phenotypic inheritance in wild yeasts.

Halfmann R, Jarosz DF, Jones SK, Chang A, Lancaster AK, Lindquist S.

Nature. 2012 Feb 15;482(7385):363-8. doi: 10.1038/nature10875.

25.

Hsp90 and environmental stress transform the adaptive value of natural genetic variation.

Jarosz DF, Lindquist S.

Science. 2010 Dec 24;330(6012):1820-4. doi: 10.1126/science.1195487.

26.

Protein homeostasis and the phenotypic manifestation of genetic diversity: principles and mechanisms.

Jarosz DF, Taipale M, Lindquist S.

Annu Rev Genet. 2010;44:189-216. doi: 10.1146/annurev.genet.40.110405.090412. Review.

PMID:
21047258
27.

HSP90 at the hub of protein homeostasis: emerging mechanistic insights.

Taipale M, Jarosz DF, Lindquist S.

Nat Rev Mol Cell Biol. 2010 Jul;11(7):515-28. doi: 10.1038/nrm2918. Epub 2010 Jun 9. Review.

PMID:
20531426
28.

A DinB variant reveals diverse physiological consequences of incomplete TLS extension by a Y-family DNA polymerase.

Jarosz DF, Cohen SE, Delaney JC, Essigmann JM, Walker GC.

Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21137-42. doi: 10.1073/pnas.0907257106. Epub 2009 Nov 30.

29.

Song: SOS (To the Tune of ABBA's "SOS").

Simon SM, Waters LS, Jarosz DF, Beuning PJ.

Biochem Mol Biol Educ. 2009 Sep;37(5):316. doi: 10.1002/bmb.20305. No abstract available.

30.

UmuD and RecA directly modulate the mutagenic potential of the Y family DNA polymerase DinB.

Godoy VG, Jarosz DF, Simon SM, Abyzov A, Ilyin V, Walker GC.

Mol Cell. 2007 Dec 28;28(6):1058-70.

31.

Proficient and accurate bypass of persistent DNA lesions by DinB DNA polymerases.

Jarosz DF, Godoy VG, Walker GC.

Cell Cycle. 2007 Apr 1;6(7):817-22. Epub 2007 Apr 23. Review.

PMID:
17377496
32.

DNA polymerase V allows bypass of toxic guanine oxidation products in vivo.

Neeley WL, Delaney S, Alekseyev YO, Jarosz DF, Delaney JC, Walker GC, Essigmann JM.

J Biol Chem. 2007 Apr 27;282(17):12741-8. Epub 2007 Feb 24.

33.

Y-family DNA polymerases in Escherichia coli.

Jarosz DF, Beuning PJ, Cohen SE, Walker GC.

Trends Microbiol. 2007 Feb;15(2):70-7. Epub 2007 Jan 4. Review.

PMID:
17207624
34.

Characterization of Escherichia coli translesion synthesis polymerases and their accessory factors.

Beuning PJ, Simon SM, Godoy VG, Jarosz DF, Walker GC.

Methods Enzymol. 2006;408:318-40.

PMID:
16793378
35.

Y-family DNA polymerases respond to DNA damage-independent inhibition of replication fork progression.

Godoy VG, Jarosz DF, Walker FL, Simmons LA, Walker GC.

EMBO J. 2006 Feb 22;25(4):868-79. Epub 2006 Feb 16.

36.

A single amino acid governs enhanced activity of DinB DNA polymerases on damaged templates.

Jarosz DF, Godoy VG, Delaney JC, Essigmann JM, Walker GC.

Nature. 2006 Jan 12;439(7073):225-8.

PMID:
16407906

Supplemental Content

Loading ...
Support Center