Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 112

1.

Developmental ROS individualizes organismal stress resistance and lifespan.

Bazopoulou D, Knoefler D, Zheng Y, Ulrich K, Oleson BJ, Xie L, Kim M, Kaufmann A, Lee YT, Dou Y, Chen Y, Quan S, Jakob U.

Nature. 2019 Dec 4. doi: 10.1038/s41586-019-1814-y. [Epub ahead of print]

PMID:
31801997
2.

The Anti-Aggregation Holdase Hsp33 Promotes the Formation of Folded Protein Structures.

Moayed F, Bezrukavnikov S, Naqvi MM, Groitl B, Cremers CM, Kramer G, Ghosh K, Jakob U, Tans SJ.

Biophys J. 2019 Nov 11. pii: S0006-3495(19)30904-X. doi: 10.1016/j.bpj.2019.10.040. [Epub ahead of print]

PMID:
31757359
3.

An essential thioredoxin-type protein of Trypanosoma brucei acts as redox-regulated mitochondrial chaperone.

Currier RB, Ulrich K, Leroux AE, Dirdjaja N, Deambrosi M, Bonilla M, Ahmed YL, Adrian L, Antelmann H, Jakob U, Comini MA, Krauth-Siegel RL.

PLoS Pathog. 2019 Sep 26;15(9):e1008065. doi: 10.1371/journal.ppat.1008065. eCollection 2019 Sep.

4.

Mechanistic insights into the protective roles of polyphosphate against amyloid cytotoxicity.

Lempart J, Tse E, Lauer JA, Ivanova MI, Sutter A, Yoo N, Huettemann P, Southworth D, Jakob U.

Life Sci Alliance. 2019 Sep 18;2(5). pii: e201900486. doi: 10.26508/lsa.201900486. Print 2019 Oct.

5.

Polyphosphate Initiates Tau Aggregation through Intra- and Intermolecular Scaffolding.

Wickramasinghe SP, Lempart J, Merens HE, Murphy J, Huettemann P, Jakob U, Rhoades E.

Biophys J. 2019 Aug 20;117(4):717-728. doi: 10.1016/j.bpj.2019.07.028. Epub 2019 Jul 24.

PMID:
31400913
6.

The molecular chaperone Hsp33 is activated by atmospheric-pressure plasma protecting proteins from aggregation.

Krewing M, Stepanek JJ, Cremers C, Lackmann JW, Schubert B, Müller A, Awakowicz P, Leichert LIO, Jakob U, Bandow JE.

J R Soc Interface. 2019 Jun 28;16(155):20180966. doi: 10.1098/rsif.2018.0966. Epub 2019 Jun 19.

PMID:
31213177
7.

The role of thiols in antioxidant systems.

Ulrich K, Jakob U.

Free Radic Biol Med. 2019 Aug 20;140:14-27. doi: 10.1016/j.freeradbiomed.2019.05.035. Epub 2019 Jun 13. Review.

PMID:
31201851
8.

Chaperone activation and client binding of a 2-cysteine peroxiredoxin.

Teixeira F, Tse E, Castro H, Makepeace KAT, Meinen BA, Borchers CH, Poole LB, Bardwell JC, Tomás AM, Southworth DR, Jakob U.

Nat Commun. 2019 Feb 8;10(1):659. doi: 10.1038/s41467-019-08565-8.

9.

Role of Polyphosphate in Amyloidogenic Processes.

Lempart J, Jakob U.

Cold Spring Harb Perspect Biol. 2019 May 1;11(5). pii: a034041. doi: 10.1101/cshperspect.a034041. Review.

PMID:
30617049
10.

Inorganic polyphosphate, a multifunctional polyanionic protein scaffold.

Xie L, Jakob U.

J Biol Chem. 2019 Feb 8;294(6):2180-2190. doi: 10.1074/jbc.REV118.002808. Epub 2018 Nov 13. Review.

11.

Polyphosphate Stabilizes Protein Unfolding Intermediates as Soluble Amyloid-like Oligomers.

Yoo NG, Dogra S, Meinen BA, Tse E, Haefliger J, Southworth DR, Gray MJ, Dahl JU, Jakob U.

J Mol Biol. 2018 Oct 19;430(21):4195-4208. doi: 10.1016/j.jmb.2018.08.016. Epub 2018 Aug 18.

12.

Phase shifts in protein folding space: links to stress adaptation and disease.

Alberti S, Jakob U.

Mol Biol Cell. 2018 Mar 15;29(6):695. doi: 10.1091/mbc.E17-11-0685. No abstract available.

13.

Maintaining a Healthy Proteome during Oxidative Stress.

Reichmann D, Voth W, Jakob U.

Mol Cell. 2018 Jan 18;69(2):203-213. doi: 10.1016/j.molcel.2017.12.021. Review.

14.

Do developmental temperatures affect redox level and lifespan in C. elegans through upregulation of peroxiredoxin?

Henderson D, Huebner C, Markowitz M, Taube N, Harvanek ZM, Jakob U, Knoefler D.

Redox Biol. 2018 Apr;14:386-390. doi: 10.1016/j.redox.2017.10.003. Epub 2017 Oct 7.

15.

Stress-Activated Chaperones: A First Line of Defense.

Voth W, Jakob U.

Trends Biochem Sci. 2017 Nov;42(11):899-913. doi: 10.1016/j.tibs.2017.08.006. Epub 2017 Sep 8. Review.

16.

Pseudomonas aeruginosa defense systems against microbicidal oxidants.

Groitl B, Dahl JU, Schroeder JW, Jakob U.

Mol Microbiol. 2017 Nov;106(3):335-350. doi: 10.1111/mmi.13768. Epub 2017 Aug 29.

17.

The anti-inflammatory drug mesalamine targets bacterial polyphosphate accumulation.

Dahl JU, Gray MJ, Bazopoulou D, Beaufay F, Lempart J, Koenigsknecht MJ, Wang Y, Baker JR, Hasler WL, Young VB, Sun D, Jakob U.

Nat Microbiol. 2017 Jan 23;2:16267. doi: 10.1038/nmicrobiol.2016.267.

18.

Detection of the pH-dependent Activity of Escherichia coli Chaperone HdeB In Vitro and In Vivo.

Dahl JU, Koldewey P, Bardwell JC, Jakob U.

J Vis Exp. 2016 Oct 23;(116). doi: 10.3791/54527.

19.

Polyphosphate: A Conserved Modifier of Amyloidogenic Processes.

Cremers CM, Knoefler D, Gates S, Martin N, Dahl JU, Lempart J, Xie L, Chapman MR, Galvan V, Southworth DR, Jakob U.

Mol Cell. 2016 Sep 1;63(5):768-80. doi: 10.1016/j.molcel.2016.07.016. Epub 2016 Aug 25.

20.

Do nucleic acids moonlight as molecular chaperones?

Docter BE, Horowitz S, Gray MJ, Jakob U, Bardwell JC.

Nucleic Acids Res. 2016 Jun 2;44(10):4835-45. doi: 10.1093/nar/gkw291. Epub 2016 Apr 21.

21.

Protein unfolding as a switch from self-recognition to high-affinity client binding.

Groitl B, Horowitz S, Makepeace KAT, Petrotchenko EV, Borchers CH, Reichmann D, Bardwell JCA, Jakob U.

Nat Commun. 2016 Jan 20;7:10357. doi: 10.1038/ncomms10357.

22.

Janus-faced Sestrin2 controls ROS and mTOR signalling through two separate functional domains.

Kim H, An S, Ro SH, Teixeira F, Park GJ, Kim C, Cho CS, Kim JS, Jakob U, Lee JH, Cho US.

Nat Commun. 2015 Nov 27;6:10025. doi: 10.1038/ncomms10025.

23.

HdeB functions as an acid-protective chaperone in bacteria.

Dahl JU, Koldewey P, Salmon L, Horowitz S, Bardwell JC, Jakob U.

J Biol Chem. 2015 Apr 17;290(16):9950. doi: 10.1074/jbc.A114.612986. No abstract available.

24.

Does the Transcription Factor NemR Use a Regulatory Sulfenamide Bond to Sense Bleach?

Gray MJ, Li Y, Leichert LI, Xu Z, Jakob U.

Antioxid Redox Signal. 2015 Sep 20;23(9):747-54. doi: 10.1089/ars.2015.6346. Epub 2015 Jun 22.

25.

Protein quality control under oxidative stress conditions.

Dahl JU, Gray MJ, Jakob U.

J Mol Biol. 2015 Apr 10;427(7):1549-63. doi: 10.1016/j.jmb.2015.02.014. Epub 2015 Feb 16. Review.

26.

Mitochondrial peroxiredoxin functions as crucial chaperone reservoir in Leishmania infantum.

Teixeira F, Castro H, Cruz T, Tse E, Koldewey P, Southworth DR, Tomás AM, Jakob U.

Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):E616-24. doi: 10.1073/pnas.1419682112. Epub 2015 Feb 2.

27.

Oxidative stress protection by polyphosphate--new roles for an old player.

Gray MJ, Jakob U.

Curr Opin Microbiol. 2015 Apr;24:1-6. doi: 10.1016/j.mib.2014.12.004. Epub 2015 Jan 10. Review.

28.

HdeB functions as an acid-protective chaperone in bacteria.

Dahl JU, Koldewey P, Salmon L, Horowitz S, Bardwell JC, Jakob U.

J Biol Chem. 2015 Jan 2;290(1):65-75. doi: 10.1074/jbc.M114.612986. Epub 2014 Nov 12. Erratum in: J Biol Chem. 2015 Apr 17;290(16):9950.

29.

The 'mitoflash' probe cpYFP does not respond to superoxide.

Schwarzländer M, Wagner S, Ermakova YG, Belousov VV, Radi R, Beckman JS, Buettner GR, Demaurex N, Duchen MR, Forman HJ, Fricker MD, Gems D, Halestrap AP, Halliwell B, Jakob U, Johnston IG, Jones NS, Logan DC, Morgan B, Müller FL, Nicholls DG, Remington SJ, Schumacker PT, Winterbourn CC, Sweetlove LJ, Meyer AJ, Dick TP, Murphy MP.

Nature. 2014 Oct 23;514(7523):E12-4. doi: 10.1038/nature13858. No abstract available.

30.

The protein targeting factor Get3 functions as ATP-independent chaperone under oxidative stress conditions.

Voth W, Schick M, Gates S, Li S, Vilardi F, Gostimskaya I, Southworth DR, Schwappach B, Jakob U.

Mol Cell. 2014 Oct 2;56(1):116-27. doi: 10.1016/j.molcel.2014.08.017. Epub 2014 Sep 18.

31.

About the dangers, costs and benefits of living an aerobic lifestyle.

Knoefler D, Leichert LI, Thamsen M, Cremers CM, Reichmann D, Gray MJ, Wholey WY, Jakob U.

Biochem Soc Trans. 2014 Aug;42(4):917-21. doi: 10.1042/BST20140108. Review.

32.

Bile salts act as effective protein-unfolding agents and instigators of disulfide stress in vivo.

Cremers CM, Knoefler D, Vitvitsky V, Banerjee R, Jakob U.

Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):E1610-9. doi: 10.1073/pnas.1401941111. Epub 2014 Apr 4.

33.

Thiol-based redox switches.

Groitl B, Jakob U.

Biochim Biophys Acta. 2014 Aug;1844(8):1335-43. doi: 10.1016/j.bbapap.2014.03.007. Epub 2014 Mar 19. Review.

34.

Polyphosphate is a primordial chaperone.

Gray MJ, Wholey WY, Wagner NO, Cremers CM, Mueller-Schickert A, Hock NT, Krieger AG, Smith EM, Bender RA, Bardwell JC, Jakob U.

Mol Cell. 2014 Mar 6;53(5):689-99. doi: 10.1016/j.molcel.2014.01.012. Epub 2014 Feb 20.

35.

Conditionally and transiently disordered proteins: awakening cryptic disorder to regulate protein function.

Jakob U, Kriwacki R, Uversky VN.

Chem Rev. 2014 Jul 9;114(13):6779-805. doi: 10.1021/cr400459c. Epub 2014 Feb 6. Review. No abstract available.

36.

Unusual orthogonality in the cleavage process of closely related chelating protecting groups for carboxylic acids by using different metal ions.

Mundinger S, Jakob U, Bannwarth W.

Chemistry. 2014 Jan 27;20(5):1258-62. doi: 10.1002/chem.201302708. Epub 2014 Jan 8.

PMID:
24403218
37.

The RclR protein is a reactive chlorine-specific transcription factor in Escherichia coli.

Parker BW, Schwessinger EA, Jakob U, Gray MJ.

J Biol Chem. 2013 Nov 8;288(45):32574-84. doi: 10.1074/jbc.M113.503516. Epub 2013 Sep 27.

38.

Oxidant sensing by reversible disulfide bond formation.

Cremers CM, Jakob U.

J Biol Chem. 2013 Sep 13;288(37):26489-96. doi: 10.1074/jbc.R113.462929. Epub 2013 Jul 16. Review.

39.

Bacterial responses to reactive chlorine species.

Gray MJ, Wholey WY, Jakob U.

Annu Rev Microbiol. 2013;67:141-60. doi: 10.1146/annurev-micro-102912-142520. Epub 2013 Jun 14. Review.

40.

Nonnative disulfide bond formation activates the σ32-dependent heat shock response in Escherichia coli.

Müller A, Hoffmann JH, Meyer HE, Narberhaus F, Jakob U, Leichert LI.

J Bacteriol. 2013 Jun;195(12):2807-16. doi: 10.1128/JB.00127-13. Epub 2013 Apr 12.

41.

NemR is a bleach-sensing transcription factor.

Gray MJ, Wholey WY, Parker BW, Kim M, Jakob U.

J Biol Chem. 2013 May 10;288(19):13789-98. doi: 10.1074/jbc.M113.454421. Epub 2013 Mar 27.

42.

The roles of conditional disorder in redox proteins.

Reichmann D, Jakob U.

Curr Opin Struct Biol. 2013 Jun;23(3):436-42. doi: 10.1016/j.sbi.2013.02.006. Epub 2013 Mar 13. Review.

43.

Time line of redox events in aging postmitotic cells.

Brandes N, Tienson H, Lindemann A, Vitvitsky V, Reichmann D, Banerjee R, Jakob U.

Elife. 2013 Feb 5;2:e00306. doi: 10.7554/eLife.00306.

44.

Redox control: A black hole for oxidized glutathione.

Winther JR, Jakob U.

Nat Chem Biol. 2013 Feb;9(2):69-70. doi: 10.1038/nchembio.1161. No abstract available.

45.

Get3 is a holdase chaperone and moves to deposition sites for aggregated proteins when membrane targeting is blocked.

Powis K, Schrul B, Tienson H, Gostimskaya I, Breker M, High S, Schuldiner M, Jakob U, Schwappach B.

J Cell Sci. 2013 Jan 15;126(Pt 2):473-83. doi: 10.1242/jcs.112151. Epub 2012 Nov 30.

46.

Conditional disorder in chaperone action.

Bardwell JC, Jakob U.

Trends Biochem Sci. 2012 Dec;37(12):517-25. doi: 10.1016/j.tibs.2012.08.006. Epub 2012 Sep 24. Review.

47.

Modification and optimization of the bis-picolylamide-based relay protection for carboxylic acids to be cleaved by unusual complexation with Cu2+ salts.

Mundinger S, Jakob U, Bichovski P, Bannwarth W.

J Org Chem. 2012 Oct 19;77(20):8968-79. doi: 10.1021/jo301349t. Epub 2012 Oct 1.

PMID:
22978430
48.

Quantitative in vivo redox sensors uncover oxidative stress as an early event in life.

Knoefler D, Thamsen M, Koniczek M, Niemuth NJ, Diederich AK, Jakob U.

Mol Cell. 2012 Sep 14;47(5):767-76. doi: 10.1016/j.molcel.2012.06.016. Epub 2012 Jul 19.

49.

Redox, haem and CO in enzymatic catalysis and regulation.

Ragsdale SW, Yi L, Bender G, Gupta N, Kung Y, Yan L, Stich TA, Doukov T, Leichert L, Jenkins PM, Bianchetti CM, George SJ, Cramer SP, Britt RD, Jakob U, Martens JR, Phillips GN Jr, Drennan CL.

Biochem Soc Trans. 2012 Jun 1;40(3):501-7. doi: 10.1042/BST20120083. Review.

50.

Order out of disorder: working cycle of an intrinsically unfolded chaperone.

Reichmann D, Xu Y, Cremers CM, Ilbert M, Mittelman R, Fitzgerald MC, Jakob U.

Cell. 2012 Mar 2;148(5):947-57. doi: 10.1016/j.cell.2012.01.045.

Supplemental Content

Support Center