Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 112

1.

Correction to: Periosteal progenitors contribute to load-induced bone formation in adult mice and require primary cilia to sense mechanical stimulation.

Moore ER, Zhu YX, Ryu HS, Jacobs CR.

Stem Cell Res Ther. 2018 Aug 28;9(1):229. doi: 10.1186/s13287-018-0975-1.

2.

Primary cilia are necessary for Prx1-expressing cells to contribute to postnatal skeletogenesis.

Moore ER, Yang Y, Jacobs CR.

J Cell Sci. 2018 Aug 20;131(16). pii: jcs217828. doi: 10.1242/jcs.217828.

PMID:
30002136
3.

Periosteal progenitors contribute to load-induced bone formation in adult mice and require primary cilia to sense mechanical stimulation.

Moore ER, Zhu YX, Ryu HS, Jacobs CR.

Stem Cell Res Ther. 2018 Jul 11;9(1):190. doi: 10.1186/s13287-018-0930-1. Erratum in: Stem Cell Res Ther. 2018 Aug 28;9(1):229.

4.

Perspectives on Sharing Models and Related Resources in Computational Biomechanics Research.

Erdemir A, Hunter PJ, Holzapfel GA, Loew LM, Middleton J, Jacobs CR, Nithiarasu P, Löhner R, Wei G, Winkelstein BA, Barocas VH, Guilak F, Ku JP, Hicks JL, Delp SL, Sacks M, Weiss JA, Ateshian GA, Maas SA, McCulloch AD, Peng GCY.

J Biomech Eng. 2018 Feb 1;140(2). doi: 10.1115/1.4038768.

PMID:
29247253
5.

The primary cilium as a signaling nexus for growth plate function and subsequent skeletal development.

Moore ER, Jacobs CR.

J Orthop Res. 2018 Feb;36(2):533-545. doi: 10.1002/jor.23732. Epub 2017 Oct 9. Review.

PMID:
28901584
6.

Primary cilia: Cell and molecular mechanosensors directing whole tissue function.

Spasic M, Jacobs CR.

Semin Cell Dev Biol. 2017 Nov;71:42-52. doi: 10.1016/j.semcdb.2017.08.036. Epub 2017 Aug 24. Review.

7.

Lengthening primary cilia enhances cellular mechanosensitivity.

Spasic M, Jacobs CR.

Eur Cell Mater. 2017 Feb 20;33:158-168. doi: 10.22203/eCM.v033a12.

8.

Mechanical signals promote osteogenic fate through a primary cilia-mediated mechanism.

Chen JC, Hoey DA, Chua M, Bellon R, Jacobs CR.

FASEB J. 2016 Apr;30(4):1504-11. doi: 10.1096/fj.15-276402. Epub 2015 Dec 16.

9.

The primary cilium is a self-adaptable, integrating nexus for mechanical stimuli and cellular signaling.

Nguyen AM, Young YN, Jacobs CR.

Biol Open. 2015 Nov 24;4(12):1733-8. doi: 10.1242/bio.014787.

10.

The primary cilium functions as a mechanical and calcium signaling nexus.

Lee KL, Guevarra MD, Nguyen AM, Chua MC, Wang Y, Jacobs CR.

Cilia. 2015 May 29;4:7. doi: 10.1186/s13630-015-0016-y. eCollection 2015.

11.

Seeing the unseen: cell strain and mechanosensing.

Duffy MP, Jacobs CR.

Biophys J. 2015 Apr 7;108(7):1583-1584. doi: 10.1016/j.bpj.2015.03.008. No abstract available.

12.

Epigenetic changes during mechanically induced osteogenic lineage commitment.

Chen JC, Chua M, Bellon RB, Jacobs CR.

J Biomech Eng. 2015 Feb 1;137(2):020902. doi: 10.1115/1.4029551. Epub 2015 Jan 26.

13.

Oscillatory fluid flow influences primary cilia and microtubule mechanics.

Espinha LC, Hoey DA, Fernandes PR, Rodrigues HC, Jacobs CR.

Cytoskeleton (Hoboken). 2014 Jul;71(7):435-45. doi: 10.1002/cm.21183. Epub 2014 Jul 17.

14.

Adenylyl cyclase 6 mediates loading-induced bone adaptation in vivo.

Lee KL, Hoey DA, Spasic M, Tang T, Hammond HK, Jacobs CR.

FASEB J. 2014 Mar;28(3):1157-65. doi: 10.1096/fj.13-240432. Epub 2013 Nov 25.

15.

Mechanically induced osteogenic lineage commitment of stem cells.

Chen JC, Jacobs CR.

Stem Cell Res Ther. 2013;4(5):107. Review.

16.

CXCR4 antagonism attenuates load-induced periosteal bone formation in mice.

Leucht P, Temiyasathit S, Russell A, Arguello JF, Jacobs CR, Helms JA, Castillo AB.

J Orthop Res. 2013 Nov;31(11):1828-38. doi: 10.1002/jor.22440. Epub 2013 Jul 23.

17.

Cellular and Molecular Bioengineering: A Tipping Point.

Brown G, Butler PJ, Chang DW, Chien S, Clegg RM, Dewey CF, Dong C, Guo XE, Helmke BP, Hess H, Jacobs CR, Kaunas RR, Kumar S, Lu HH, Mathur AB, Mow VC, Schmid-Schönbein GW, Skoracki R, Wang N, Wang Y, Zhu C.

Cell Mol Bioeng. 2012 Sep 1;5(3):239-253. Epub 2012 Aug 24.

18.

Emerging role of primary cilia as mechanosensors in osteocytes.

Nguyen AM, Jacobs CR.

Bone. 2013 Jun;54(2):196-204. doi: 10.1016/j.bone.2012.11.016. Epub 2012 Nov 28. Review.

19.

Focal adhesion kinase plays a role in osteoblast mechanotransduction in vitro but does not affect load-induced bone formation in vivo.

Castillo AB, Blundo JT, Chen JC, Lee KL, Yereddi NR, Jang E, Kumar S, Tang WJ, Zarrin S, Kim JB, Jacobs CR.

PLoS One. 2012;7(9):e43291. doi: 10.1371/journal.pone.0043291. Epub 2012 Sep 21.

20.

Primary cilia-mediated mechanotransduction in human mesenchymal stem cells.

Hoey DA, Tormey S, Ramcharan S, O'Brien FJ, Jacobs CR.

Stem Cells. 2012 Nov;30(11):2561-70. doi: 10.1002/stem.1235.

21.

Dynamics of the primary cilium in shear flow.

Young YN, Downs M, Jacobs CR.

Biophys J. 2012 Aug 22;103(4):629-39. doi: 10.1016/j.bpj.2012.07.009.

22.

Primary cilia act as mechanosensors during bone healing around an implant.

Leucht P, Monica SD, Temiyasathit S, Lenton K, Manu A, Longaker MT, Jacobs CR, Spilker RL, Guo H, Brunski JB, Helms JA.

Med Eng Phys. 2013 Mar;35(3):392-402. doi: 10.1016/j.medengphy.2012.06.005. Epub 2012 Jul 10.

23.

The primary cilium as a novel extracellular sensor in bone.

Hoey DA, Chen JC, Jacobs CR.

Front Endocrinol (Lausanne). 2012 Jun 13;3:75. doi: 10.3389/fendo.2012.00075. eCollection 2012.

24.

An experimental and computational analysis of primary cilia deflection under fluid flow.

Downs ME, Nguyen AM, Herzog FA, Hoey DA, Jacobs CR.

Comput Methods Biomech Biomed Engin. 2014;17(1):2-10. doi: 10.1080/10255842.2011.653784. Epub 2012 Mar 28. Erratum in: Comput Methods Biomech Biomed Engin. 2014;17(4):459.

25.

Mechanosensing by the primary cilium: deletion of Kif3A reduces bone formation due to loading.

Temiyasathit S, Tang WJ, Leucht P, Anderson CT, Monica SD, Castillo AB, Helms JA, Stearns T, Jacobs CR.

PLoS One. 2012;7(3):e33368. doi: 10.1371/journal.pone.0033368. Epub 2012 Mar 12.

26.

Actin and ERK1/2-CEBPβ signaling mediates phagocytosis-induced innate immune response of osteoprogenitor cells.

Lee HG, Minematsu H, Kim KO, Celil Aydemir AB, Shin MJ, Nizami SA, Chung KJ, Hsu AC, Jacobs CR, Lee FY.

Biomaterials. 2011 Dec;32(35):9197-206. doi: 10.1016/j.biomaterials.2011.08.059. Epub 2011 Sep 6.

27.

The mechanics of the primary cilium: an intricate structure with complex function.

Hoey DA, Downs ME, Jacobs CR.

J Biomech. 2012 Jan 3;45(1):17-26. doi: 10.1016/j.jbiomech.2011.08.008. Epub 2011 Sep 6. Review.

28.

A role for the primary cilium in paracrine signaling between mechanically stimulated osteocytes and mesenchymal stem cells.

Hoey DA, Kelly DJ, Jacobs CR.

Biochem Biophys Res Commun. 2011 Aug 19;412(1):182-7. doi: 10.1016/j.bbrc.2011.07.072. Epub 2011 Jul 23.

29.

Steady and oscillatory fluid flows produce a similar osteogenic phenotype.

Case N, Sen B, Thomas JA, Styner M, Xie Z, Jacobs CR, Rubin J.

Calcif Tissue Int. 2011 Mar;88(3):189-97. doi: 10.1007/s00223-010-9448-y. Epub 2010 Dec 17.

30.
31.

The epigenetic mechanism of mechanically induced osteogenic differentiation.

Arnsdorf EJ, Tummala P, Castillo AB, Zhang F, Jacobs CR.

J Biomech. 2010 Nov 16;43(15):2881-6. doi: 10.1016/j.jbiomech.2010.07.033. Epub 2010 Aug 21.

32.

Osteocyte mechanobiology and pericellular mechanics.

Jacobs CR, Temiyasathit S, Castillo AB.

Annu Rev Biomed Eng. 2010 Aug 15;12:369-400. doi: 10.1146/annurev-bioeng-070909-105302. Review.

PMID:
20617941
33.

Mesenchymal stem cell mechanobiology.

Castillo AB, Jacobs CR.

Curr Osteoporos Rep. 2010 Jun;8(2):98-104. doi: 10.1007/s11914-010-0015-2. Review.

PMID:
20425617
34.

Osteocyte primary cilium and its role in bone mechanotransduction.

Temiyasathit S, Jacobs CR.

Ann N Y Acad Sci. 2010 Mar;1192:422-8. doi: 10.1111/j.1749-6632.2009.05243.x. Review.

35.

Primary cilium-dependent mechanosensing is mediated by adenylyl cyclase 6 and cyclic AMP in bone cells.

Kwon RY, Temiyasathit S, Tummala P, Quah CC, Jacobs CR.

FASEB J. 2010 Aug;24(8):2859-68. doi: 10.1096/fj.09-148007. Epub 2010 Apr 6.

36.

The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells.

Kelly DJ, Jacobs CR.

Birth Defects Res C Embryo Today. 2010 Mar;90(1):75-85. doi: 10.1002/bdrc.20173. Review.

PMID:
20301221
37.

Beta1 integrins mediate mechanosensitive signaling pathways in osteocytes.

Litzenberger JB, Kim JB, Tummala P, Jacobs CR.

Calcif Tissue Int. 2010 Apr;86(4):325-32. doi: 10.1007/s00223-010-9343-6. Epub 2010 Mar 6.

38.

Novel early response genes in osteoblasts exposed to dynamic fluid flow.

Shivaram GM, Kim CH, Batra NN, Yang W, Harris SE, Jacobs CR.

Philos Trans A Math Phys Eng Sci. 2010 Feb 13;368(1912):605-16. doi: 10.1098/rsta.2009.0231.

39.

Calcitonin-gene-related peptide stimulates stromal cell osteogenic differentiation and inhibits RANKL induced NF-kappaB activation, osteoclastogenesis and bone resorption.

Wang L, Shi X, Zhao R, Halloran BP, Clark DJ, Jacobs CR, Kingery WS.

Bone. 2010 May;46(5):1369-79. doi: 10.1016/j.bone.2009.11.029. Epub 2009 Dec 2.

40.

Effects of high frequency loading on RANKL and OPG mRNA expression in ST-2 murine stromal cells.

Kim CH, Kim KH, Jacobs CR.

BMC Musculoskelet Disord. 2009 Sep 4;10:109. doi: 10.1186/1471-2474-10-109.

41.

Non-canonical Wnt signaling and N-cadherin related beta-catenin signaling play a role in mechanically induced osteogenic cell fate.

Arnsdorf EJ, Tummala P, Jacobs CR.

PLoS One. 2009;4(4):e5388. doi: 10.1371/journal.pone.0005388. Epub 2009 Apr 29.

42.

Substance P stimulates bone marrow stromal cell osteogenic activity, osteoclast differentiation, and resorption activity in vitro.

Wang L, Zhao R, Shi X, Wei T, Halloran BP, Clark DJ, Jacobs CR, Kingery WS.

Bone. 2009 Aug;45(2):309-20. doi: 10.1016/j.bone.2009.04.203. Epub 2009 Apr 18.

43.

Influence of femoral stem geometry, material and extent of porous coating on bone ingrowth and atrophy in cementless total hip arthroplasty: an iterative finite element model.

Folgado J, Fernandes PR, Jacobs CR, Pellegrini VD Jr.

Comput Methods Biomech Biomed Engin. 2009 Apr;12(2):135-45. doi: 10.1080/10255840903081123.

PMID:
19242833
44.

Buffered platelet-rich plasma enhances mesenchymal stem cell proliferation and chondrogenic differentiation.

Mishra A, Tummala P, King A, Lee B, Kraus M, Tse V, Jacobs CR.

Tissue Eng Part C Methods. 2009 Sep;15(3):431-5. doi: 10.1089/ten.tec.2008.0534.

45.

The periosteum as a cellular source for functional tissue engineering.

Arnsdorf EJ, Jones LM, Carter DR, Jacobs CR.

Tissue Eng Part A. 2009 Sep;15(9):2637-42. doi: 10.1089/ten.TEA.2008.0244.

46.

Mechanically induced osteogenic differentiation--the role of RhoA, ROCKII and cytoskeletal dynamics.

Arnsdorf EJ, Tummala P, Kwon RY, Jacobs CR.

J Cell Sci. 2009 Feb 15;122(Pt 4):546-53. doi: 10.1242/jcs.036293. Epub 2009 Jan 27.

47.

Primary cilia: cellular sensors for the skeleton.

Anderson CT, Castillo AB, Brugmann SA, Helms JA, Jacobs CR, Stearns T.

Anat Rec (Hoboken). 2008 Sep;291(9):1074-8. doi: 10.1002/ar.20754.

48.

A microstructurally informed model for the mechanical response of three-dimensional actin networks.

Kwon RY, Lew AJ, Jacobs CR.

Comput Methods Biomech Biomed Engin. 2008 Aug;11(4):407-18. doi: 10.1080/10255840801888686.

49.

Primary cilia in bone.

Malone AM, Anderson CT, Stearns T, Jacobs CR.

J Musculoskelet Neuronal Interact. 2007 Oct-Dec;7(4):301. No abstract available.

50.

Primary cilia.

Jacobs CR.

J Musculoskelet Neuronal Interact. 2007 Oct-Dec;7(4):297-8. No abstract available.

Supplemental Content

Loading ...
Support Center