Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 21

1.

Proton-pumping F-ATPase plays an important role in Streptococcus mutans under acidic conditions.

Sekiya M, Izumisawa S, Iwamoto-Kihara A, Fan Y, Shimoyama Y, Sasaki M, Nakanishi-Matsui M.

Arch Biochem Biophys. 2019 May 15;666:46-51. doi: 10.1016/j.abb.2019.03.014. Epub 2019 Mar 29.

PMID:
30930283
2.

The carboxyl-terminal helical domain of the ATP synthase γ subunit is involved in ε subunit conformation and energy coupling.

Yamakita A, Liu Y, Futai M, Iwamoto-Kihara A.

Biochim Biophys Acta Bioenerg. 2019 May 1;1860(5):361-368. doi: 10.1016/j.bbabio.2019.03.002. Epub 2019 Mar 12.

PMID:
30876890
3.

A unique mechanism of curcumin inhibition on F1 ATPase.

Sekiya M, Hisasaka R, Iwamoto-Kihara A, Futai M, Nakanishi-Matsui M.

Biochem Biophys Res Commun. 2014 Oct 3;452(4):940-4. doi: 10.1016/j.bbrc.2014.09.027. Epub 2014 Sep 16.

PMID:
25230139
4.

Elastic rotation of Escherichia coli F(O)F(1) having ε subunit fused with cytochrome b(562) or flavodoxin reductase.

Oka H, Hosokawa H, Nakanishi-Matsui M, Dunn SD, Futai M, Iwamoto-Kihara A.

Biochem Biophys Res Commun. 2014 Apr 18;446(4):889-93. doi: 10.1016/j.bbrc.2014.03.021. Epub 2014 Mar 13.

PMID:
24631905
5.

A unique F-type H⁺-ATPase from Streptococcus mutans: an active H⁺ pump at acidic pH.

Sasaki Y, Nogami E, Maeda M, Nakanishi-Matsui M, Iwamoto-Kihara A.

Biochem Biophys Res Commun. 2014 Jan 10;443(2):677-82. doi: 10.1016/j.bbrc.2013.12.025. Epub 2013 Dec 11.

PMID:
24333424
6.

Complementation of the Fo c subunit of Escherichia coli with that of Streptococcus mutans and properties of the hybrid FoF1 ATP synthase.

Araki M, Hoshi K, Fujiwara M, Sasaki Y, Yonezawa H, Senpuku H, Iwamoto-Kihara A, Maeda M.

J Bacteriol. 2013 Nov;195(21):4873-8. doi: 10.1128/JB.00542-13. Epub 2013 Aug 23.

7.

Halotolerant cyanobacterium Aphanothece halophytica contains an Na+-dependent F1F0-ATP synthase with a potential role in salt-stress tolerance.

Soontharapirakkul K, Promden W, Yamada N, Kageyama H, Incharoensakdi A, Iwamoto-Kihara A, Takabe T.

J Biol Chem. 2011 Mar 25;286(12):10169-76. doi: 10.1074/jbc.M110.208892. Epub 2011 Jan 24.

8.

Effects of mutations in the beta subunit hinge domain on ATP synthase F1 sector rotation: interaction between Ser 174 and Ile 163.

Kashiwagi S, Iwamoto-Kihara A, Kojima M, Nonaka T, Futai M, Nakanishi-Matsui M.

Biochem Biophys Res Commun. 2008 Jan 11;365(2):227-31. Epub 2007 Nov 5.

PMID:
17983592
9.

Rotational catalysis of Escherichia coli ATP synthase F1 sector. Stochastic fluctuation and a key domain of the beta subunit.

Nakanishi-Matsui M, Kashiwagi S, Ubukata T, Iwamoto-Kihara A, Wada Y, Futai M.

J Biol Chem. 2007 Jul 13;282(28):20698-704. Epub 2007 May 21.

10.

ATP-dependent rotation of mutant ATP synthases defective in proton transport.

Hosokawa H, Nakanishi-Matsui M, Kashiwagi S, Fujii-Taira I, Hayashi K, Iwamoto-Kihara A, Wada Y, Futai M.

J Biol Chem. 2005 Jun 24;280(25):23797-801. Epub 2005 Apr 22.

11.

Subunit rotation of vacuolar-type proton pumping ATPase: relative rotation of the G and C subunits.

Hirata T, Iwamoto-Kihara A, Sun-Wada GH, Okajima T, Wada Y, Futai M.

J Biol Chem. 2003 Jun 27;278(26):23714-9. Epub 2003 Apr 1.

12.

Subunit rotation of ATP synthase embedded in membranes: a or beta subunit rotation relative to the c subunit ring.

Nishio K, Iwamoto-Kihara A, Yamamoto A, Wada Y, Futai M.

Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13448-52. Epub 2002 Sep 30.

13.

ATP synthase F(1) sector rotation. Defective torque generation in the beta subunit Ser-174 to Phe mutant and its suppression by second mutations.

Iko Y, Sambongi Y, Tanabe M, Iwamoto-Kihara A, Saito K, Ueda I, Wada Y, Futai M.

J Biol Chem. 2001 Dec 14;276(50):47508-11. Epub 2001 Oct 5.

14.

[Acyl-CoA synthetase].

Iwamoto-Kihara A, Kawaguchi A.

Nihon Rinsho. 2001 Feb;59 Suppl 2:173-7. Review. Japanese. No abstract available.

PMID:
11351569
15.

Rotation of a complex of the gamma subunit and c ring of Escherichia coli ATP synthase. The rotor and stator are interchangeable.

Tanabe M, Nishio K, Iko Y, Sambongi Y, Iwamoto-Kihara A, Wada Y, Futai M.

J Biol Chem. 2001 May 4;276(18):15269-74. Epub 2001 Feb 13.

16.

Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation.

Sambongi Y, Iko Y, Tanabe M, Omote H, Iwamoto-Kihara A, Ueda I, Yanagida T, Wada Y, Futai M.

Science. 1999 Nov 26;286(5445):1722-4.

17.

The gamma-subunit rotation and torque generation in F1-ATPase from wild-type or uncoupled mutant Escherichia coli.

Omote H, Sambonmatsu N, Saito K, Sambongi Y, Iwamoto-Kihara A, Yanagida T, Wada Y, Futai M.

Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7780-4.

18.

Stability of the Escherichia coli ATP synthase F0F1 complex is dependent on interactions between gamma Gln-269 and the beta subunit loop beta Asp-301-beta Asp-305.

Omote H, Tainaka K, Fujie K, Iwamoto-Kihara A, Wada Y, Futai M.

Arch Biochem Biophys. 1998 Oct 15;358(2):277-82.

PMID:
9784240
19.

Atomic force microscopy of Escherichia coli FoF1-ATPase in reconstituted membranes.

Takeyasu K, Omote H, Nettikadan S, Tokumasu F, Iwamoto-Kihara A, Futai M.

Ann N Y Acad Sci. 1997 Nov 3;834:149-52. No abstract available.

PMID:
9405801
20.

Molecular imaging of Escherichia coli F0F1-ATPase in reconstituted membranes using atomic force microscopy.

Takeyasu K, Omote H, Nettikadan S, Tokumasu F, Iwamoto-Kihara A, Futai M.

FEBS Lett. 1996 Aug 26;392(2):110-3.

Supplemental Content

Loading ...
Support Center