Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 44

1.

Nanoparticle interactions with immune cells dominate tumor retention and induce T cell-mediated tumor suppression in models of breast cancer.

Korangath P, Barnett JD, Sharma A, Henderson ET, Stewart J, Yu SH, Kandala SK, Yang CT, Caserto JS, Hedayati M, Armstrong TD, Jaffee E, Gruettner C, Zhou XC, Fu W, Hu C, Sukumar S, Simons BW, Ivkov R.

Sci Adv. 2020 Mar 25;6(13):eaay1601. doi: 10.1126/sciadv.aay1601. eCollection 2020 Mar.

PMID:
32232146
2.

Design and construction of a Maxwell-type induction coil for magnetic nanoparticle hyperthermia.

Attaluri A, Jackowski J, Sharma A, Kandala SK, Nemkov V, Yakey C, DeWeese TL, Kumar A, Goldstein RC, Ivkov R.

Int J Hyperthermia. 2020;37(1):1-14. doi: 10.1080/02656736.2019.1704448.

PMID:
31918595
3.

Enhancing the abscopal effect of radiation and immune checkpoint inhibitor therapies with magnetic nanoparticle hyperthermia in a model of metastatic breast cancer.

Oei AL, Korangath P, Mulka K, Helenius M, Coulter JB, Stewart J, Velarde E, Crezee J, Simons B, Stalpers LJA, Kok HP, Gabrielson K, Franken NAP, Ivkov R.

Int J Hyperthermia. 2019 Nov;36(sup1):47-63. doi: 10.1080/02656736.2019.1685686.

PMID:
31795835
4.

Bubble Magnetometry of Nanoparticle Heterogeneity and Interaction.

Balk AL, Gilbert I, Ivkov R, Unguris J, Stavis SM.

Phys Rev Appl. 2019;11. doi: 10.1103/PhysRevApplied.11.061003.

5.

Increased uptake of doxorubicin by cells undergoing heat stress does not explain its synergistic cytotoxicity with hyperthermia.

Sharma A, Özayral S, Caserto JS, Ten Cate R, Anders NM, Barnett JD, Kandala SK, Henderson E, Stewart J, Liapi E, Rudek MA, Franken NAP, Oei AL, Korangath P, Bunz F, Ivkov R.

Int J Hyperthermia. 2019;36(1):712-720. doi: 10.1080/02656736.2019.1631494.

6.

Temperature-controlled power modulation compensates for heterogeneous nanoparticle distributions: a computational optimization analysis for magnetic hyperthermia.

Kandala SK, Liapi E, Whitcomb LL, Attaluri A, Ivkov R.

Int J Hyperthermia. 2019;36(1):115-129. doi: 10.1080/02656736.2018.1538538. Epub 2018 Dec 12.

7.

Nanoparticle architecture preserves magnetic properties during coating to enable robust multi-modal functionality.

Woodard LE, Dennis CL, Borchers JA, Attaluri A, Velarde E, Dawidczyk C, Searson PC, Pomper MG, Ivkov R.

Sci Rep. 2018 Aug 23;8(1):12706. doi: 10.1038/s41598-018-29711-0.

8.

ROS-induced HepG2 cell death from hyperthermia using magnetic hydroxyapatite nanoparticles.

Yang CT, Li KY, Meng FQ, Lin JF, Young IC, Ivkov R, Lin FH.

Nanotechnology. 2018 Sep 14;29(37):375101. doi: 10.1088/1361-6528/aacda1. Epub 2018 Jun 19.

9.

Low-Dose CT Perfusion of the Liver using Reconstruction of Difference.

Seyyedi S, Liapi E, Lasser T, Ivkov R, Hatwar R, Stayman JW.

IEEE Trans Radiat Plasma Med Sci. 2018 May;2(3):205-214. doi: 10.1109/TRPMS.2018.2812360. Epub 2018 Mar 5.

10.

Physical characterization and in vivo organ distribution of coated iron oxide nanoparticles.

Sharma A, Cornejo C, Mihalic J, Geyh A, Bordelon DE, Korangath P, Westphal F, Gruettner C, Ivkov R.

Sci Rep. 2018 Mar 20;8(1):4916. doi: 10.1038/s41598-018-23317-2.

11.

Correlation between physical structure and magnetic anisotropy of a magnetic nanoparticle colloid.

Dennis CL, Jackson AJ, Borchers JA, Gruettner C, Ivkov R.

Nanotechnology. 2018 May 25;29(21):215705. doi: 10.1088/1361-6528/aab31d. Epub 2018 Mar 1.

PMID:
29493534
12.

Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy's history, efficacy and application in humans.

Mahmoudi K, Bouras A, Bozec D, Ivkov R, Hadjipanayis C.

Int J Hyperthermia. 2018 Dec;34(8):1316-1328. doi: 10.1080/02656736.2018.1430867. Epub 2018 Feb 6. Review.

13.

An optimised spectrophotometric assay for convenient and accurate quantitation of intracellular iron from iron oxide nanoparticles.

Hedayati M, Abubaker-Sharif B, Khattab M, Razavi A, Mohammed I, Nejad A, Wabler M, Zhou H, Mihalic J, Gruettner C, DeWeese T, Ivkov R.

Int J Hyperthermia. 2018 Jun;34(4):373-381. doi: 10.1080/02656736.2017.1354403. Epub 2017 Jul 31.

14.

Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles.

Soetaert F, Kandala SK, Bakuzis A, Ivkov R.

Sci Rep. 2017 Jul 27;7(1):6661. doi: 10.1038/s41598-017-07088-w.

15.

Erratum: "The polymerization of actin: Structural changes from small-angle neutron scattering" [J. Chem. Phys. 123, 154904 (2005)].

Norman AI, Ivkov R, Forbes JG, Greer SC.

J Chem Phys. 2016 Jun 14;144(22):229902. doi: 10.1063/1.4953362. No abstract available.

16.

Image-guided thermal therapy with a dual-contrast magnetic nanoparticle formulation: A feasibility study.

Attaluri A, Seshadri M, Mirpour S, Wabler M, Marinho T, Furqan M, Zhou H, De Paoli S, Gruettner C, Gilson W, DeWeese T, Garcia M, Ivkov R, Liapi E.

Int J Hyperthermia. 2016 Aug;32(5):543-57. doi: 10.3109/02656736.2016.1159737. Epub 2016 May 5.

17.

Computational evaluation of amplitude modulation for enhanced magnetic nanoparticle hyperthermia.

Soetaert F, Dupré L, Ivkov R, Crevecoeur G.

Biomed Tech (Berl). 2015 Oct;60(5):491-504. doi: 10.1515/bmt-2015-0046.

PMID:
26351900
18.

Pathways to chromothripsis.

Ivkov R, Bunz F.

Cell Cycle. 2015;14(18):2886-90. doi: 10.1080/15384101.2015.1068483. Epub 2015 Jul 15.

19.

Magnetic nanoparticle hyperthermia enhances radiation therapy: A study in mouse models of human prostate cancer.

Attaluri A, Kandala SK, Wabler M, Zhou H, Cornejo C, Armour M, Hedayati M, Zhang Y, DeWeese TL, Herman C, Ivkov R.

Int J Hyperthermia. 2015 Jun;31(4):359-74. doi: 10.3109/02656736.2015.1005178. Epub 2015 Mar 26.

20.

Evaluation of a PSMA-targeted BNF nanoparticle construct.

Behnam Azad B, Banerjee SR, Pullambhatla M, Lacerda S, Foss CA, Wang Y, Ivkov R, Pomper MG.

Nanoscale. 2015 Mar 14;7(10):4432-42. doi: 10.1039/c4nr06069e.

21.

Magnetic resonance imaging contrast of iron oxide nanoparticles developed for hyperthermia is dominated by iron content.

Wabler M, Zhu W, Hedayati M, Attaluri A, Zhou H, Mihalic J, Geyh A, DeWeese TL, Ivkov R, Artemov D.

Int J Hyperthermia. 2014 May;30(3):192-200. doi: 10.3109/02656736.2014.913321.

22.

Characterization of intratumor magnetic nanoparticle distribution and heating in a rat model of metastatic spine disease.

Zadnik PL, Molina CA, Sarabia-Estrada R, Groves ML, Wabler M, Mihalic J, McCarthy EF, Gokaslan ZL, Ivkov R, Sciubba D.

J Neurosurg Spine. 2014 Jun;20(6):740-50. doi: 10.3171/2014.2.SPINE13142. Epub 2014 Apr 4.

PMID:
24702509
23.

Development and screening of a series of antibody-conjugated and silica-coated iron oxide nanoparticles for targeting the prostate-specific membrane antigen.

Mukherjee A, Darlington T, Baldwin R, Holz C, Olson S, Kulkarni P, DeWeese TL, Getzenberg RH, Ivkov R, Lupold SE.

ChemMedChem. 2014 Jul;9(7):1356-60. doi: 10.1002/cmdc.201300549. Epub 2014 Mar 3.

24.

Monitoring nanoparticle-mediated cellular hyperthermia with a high-sensitivity biosensor.

Mukherjee A, Castanares M, Hedayati M, Wabler M, Trock B, Kulkarni P, Rodriguez R, Getzenberg RH, DeWeese TL, Ivkov R, Lupold SE.

Nanomedicine (Lond). 2014 Dec;9(18):2729-43. doi: 10.2217/nnm.13.207.

25.

Magnetic nanoparticle hyperthermia: a new frontier in biology and medicine?

Ivkov R.

Int J Hyperthermia. 2013 Dec;29(8):703-5. doi: 10.3109/02656736.2013.857434. No abstract available.

PMID:
24219798
26.

Physics of heat generation using magnetic nanoparticles for hyperthermia.

Dennis CL, Ivkov R.

Int J Hyperthermia. 2013 Dec;29(8):715-29. doi: 10.3109/02656736.2013.836758. Epub 2013 Oct 16. Review.

PMID:
24131317
27.

Effect of magnetic dipolar interactions on nanoparticle heating efficiency: implications for cancer hyperthermia.

Branquinho LC, Carrião MS, Costa AS, Zufelato N, Sousa MH, Miotto R, Ivkov R, Bakuzis AF.

Sci Rep. 2013 Oct 7;3:2887. doi: 10.1038/srep02887. Erratum in: Sci Rep. 2014;4:3637.

28.

Method to reduce non-specific tissue heating of small animals in solenoid coils.

Kumar A, Attaluri A, Mallipudi R, Cornejo C, Bordelon D, Armour M, Morua K, Deweese TL, Ivkov R.

Int J Hyperthermia. 2013;29(2):106-20. doi: 10.3109/02656736.2013.764023. Epub 2013 Feb 13.

29.

The effect of cell cluster size on intracellular nanoparticle-mediated hyperthermia: is it possible to treat microscopic tumors?

Hedayati M, Thomas O, Abubaker-Sharif B, Zhou H, Cornejo C, Zhang Y, Wabler M, Mihalic J, Gruettner C, Westphal F, Geyh A, Deweese TL, Ivkov R.

Nanomedicine (Lond). 2013 Jan;8(1):29-41. doi: 10.2217/nnm.12.98. Epub 2012 Nov 22.

30.

Modified Solenoid Coil That Efficiently Produces High Amplitude AC Magnetic Fields With Enhanced Uniformity for Biomedical Applications.

Bordelon DE, Goldstein RC, Nemkov VS, Kumar A, Jackowski JK, DeWeese TL, Ivkov R.

IEEE Trans Magn. 2012 Oct;48(1):47-52.

31.

Preliminary study of injury from heating systemically delivered, nontargeted dextran-superparamagnetic iron oxide nanoparticles in mice.

Kut C, Zhang Y, Hedayati M, Zhou H, Cornejo C, Bordelon D, Mihalic J, Wabler M, Burghardt E, Gruettner C, Geyh A, Brayton C, Deweese TL, Ivkov R.

Nanomedicine (Lond). 2012 Nov;7(11):1697-711. doi: 10.2217/nnm.12.65. Epub 2012 Jul 26.

32.

Magnetic nanoparticle biodistribution following intratumoral administration.

Giustini AJ, Ivkov R, Hoopes PJ.

Nanotechnology. 2011 Aug 26;22(34):345101. doi: 10.1088/0957-4484/22/34/345101. Epub 2011 Jul 28.

33.

Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia.

Dennis CL, Jackson AJ, Borchers JA, Hoopes PJ, Strawbridge R, Foreman AR, van Lierop J, Grüttner C, Ivkov R.

Nanotechnology. 2009 Sep 30;20(39):395103. doi: 10.1088/0957-4484/20/39/395103. Epub 2009 Sep 3.

34.

Assessment of intratumor non-antibody directed iron oxide nanoparticle hyperthermia cancer therapy and antibody directed IONP uptake in murine and human cells.

Hoopes P, Tate J, Ogden J, Strawbridge R, Fiering S, Petryk A, Cassim S, Giustini A, Demidenko E, Ivkov R, Barry S, Chinn P, Foreman A.

Proc SPIE Int Soc Opt Eng. 2009 Feb 23;7181:71810P.

36.

Comparison of Iron Oxide Nanoparticle and Waterbath Hyperthermia Cytotoxicity.

Ogden J, Tate J, Strawbridge R, Ivkov R, Hoopes P.

Proc SPIE Int Soc Opt Eng. 2009 Feb 12;7181:71810K.

37.

NanoFerrite particle based radioimmunonanoparticles: binding affinity and in vivo pharmacokinetics.

Natarajan A, Gruettner C, Ivkov R, DeNardo GL, Mirick G, Yuan A, Foreman A, DeNardo SJ.

Bioconjug Chem. 2008 Jun;19(6):1211-8. doi: 10.1021/bc800015n. Epub 2008 Jun 3.

38.

Short communication: nanoparticle thermotherapy and external beam radiation therapy for human prostate cancer cells.

Lehmann J, Natarajan A, Denardo GL, Ivkov R, Foreman AR, Catapano C, Mirick G, Quang T, Gruettner C, Denardo SJ.

Cancer Biother Radiopharm. 2008 Apr;23(2):265-71. doi: 10.1089/cbr.2007.0411.

PMID:
18454696
39.

Thermal dosimetry predictive of efficacy of 111In-ChL6 nanoparticle AMF--induced thermoablative therapy for human breast cancer in mice.

DeNardo SJ, DeNardo GL, Natarajan A, Miers LA, Foreman AR, Gruettner C, Adamson GN, Ivkov R.

J Nucl Med. 2007 Mar;48(3):437-44.

40.

Intratumoral Iron Oxide Nanoparticle Hyperthermia and Radiation Cancer Treatment.

Hoopes P, Strawbridge R, Gibson U, Zeng Q, Pierce Z, Savellano M, Tate J, Ogden J, Baker I, Ivkov R, Foreman A.

Proc SPIE Int Soc Opt Eng. 2007 Feb 13;6440:64400K.

41.

The magnitude and time-dependence of the apoptotic response of normal and malignant cells subjected to ionizing radiation versus hyperthermia.

Vorotnikova E, Ivkov R, Foreman A, Tries M, Braunhut SJ.

Int J Radiat Biol. 2006 Aug;82(8):549-59.

PMID:
16966182
42.

The polymerization of actin: structural changes from small-angle neutron scattering.

Norman AI, Ivkov R, Forbes JG, Greer SC.

J Chem Phys. 2005 Oct 15;123(15):154904. Erratum in: J Chem Phys. 2016 Jun 14;144(22):229902.

PMID:
16252969
43.

Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer.

Ivkov R, DeNardo SJ, Daum W, Foreman AR, Goldstein RC, Nemkov VS, DeNardo GL.

Clin Cancer Res. 2005 Oct 1;11(19 Pt 2):7093s-7103s.

44.

Development of tumor targeting bioprobes ((111)In-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy.

DeNardo SJ, DeNardo GL, Miers LA, Natarajan A, Foreman AR, Gruettner C, Adamson GN, Ivkov R.

Clin Cancer Res. 2005 Oct 1;11(19 Pt 2):7087s-7092s.

Supplemental Content

Support Center