Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 72

1.

Fast fit-free analysis of fluorescence lifetime imaging via deep learning.

Smith JT, Yao R, Sinsuebphon N, Rudkouskaya A, Un N, Mazurkiewicz J, Barroso M, Yan P, Intes X.

Proc Natl Acad Sci U S A. 2019 Nov 12. pii: 201912707. doi: 10.1073/pnas.1912707116. [Epub ahead of print]

PMID:
31719196
2.

Hyperspectral wide-field time domain single-pixel diffuse optical tomography platform.

Pian Q, Yao R, Intes X.

Biomed Opt Express. 2018 Nov 15;9(12):6258-6272. doi: 10.1364/BOE.9.006258. eCollection 2018 Dec 1.

3.

Net-FLICS: fast quantitative wide-field fluorescence lifetime imaging with compressed sensing - a deep learning approach.

Yao R, Ochoa M, Yan P, Intes X.

Light Sci Appl. 2019 Mar 6;8:26. doi: 10.1038/s41377-019-0138-x. eCollection 2019.

4.

Laser-based 3D bioprinting for spatial and size control of tumor spheroids and embryoid bodies.

Kingsley DM, Roberge CL, Rudkouskaya A, Faulkner DE, Barroso M, Intes X, Corr DT.

Acta Biomater. 2019 Sep 1;95:357-370. doi: 10.1016/j.actbio.2019.02.014. Epub 2019 Feb 15.

PMID:
30776506
5.

In vitro and in vivo phasor analysis of stoichiometry and pharmacokinetics using short-lifetime near-infrared dyes and time-gated imaging.

Chen SJ, Sinsuebphon N, Rudkouskaya A, Barroso M, Intes X, Michalet X.

J Biophotonics. 2019 Mar;12(3):e201800185. doi: 10.1002/jbio.201800185. Epub 2018 Dec 9.

PMID:
30421551
6.

Objective assessment of surgical skill transfer using non-invasive brain imaging.

Nemani A, Kruger U, Cooper CA, Schwaitzberg SD, Intes X, De S.

Surg Endosc. 2019 Aug;33(8):2485-2494. doi: 10.1007/s00464-018-6535-z. Epub 2018 Oct 17.

PMID:
30334166
7.

Direct approach to compute Jacobians for diffuse optical tomography using perturbation Monte Carlo-based photon "replay".

Yao R, Intes X, Fang Q.

Biomed Opt Express. 2018 Sep 4;9(10):4588-4603. doi: 10.1364/BOE.9.004588. eCollection 2018 Oct 1.

8.

Assessing bimanual motor skills with optical neuroimaging.

Nemani A, Yücel MA, Kruger U, Gee DW, Cooper C, Schwaitzberg SD, De S, Intes X.

Sci Adv. 2018 Oct 3;4(10):eaat3807. doi: 10.1126/sciadv.aat3807. eCollection 2018 Oct.

9.

Improving mesoscopic fluorescence molecular tomography via preconditioning and regularization.

Yang F, Yao R, Ozturk M, Faulkner D, Qu Q, Intes X.

Biomed Opt Express. 2018 May 23;9(6):2765-2778. doi: 10.1364/BOE.9.002765. eCollection 2018 Jun 1.

10.

Review of structured light in diffuse optical imaging.

Angelo JP, Chen SJ, Ochoa M, Sunar U, Gioux S, Intes X.

J Biomed Opt. 2018 Sep;24(7):1-20. doi: 10.1117/1.JBO.24.7.071602.

11.

Assessing patterns for compressive fluorescence lifetime imaging.

Ochoa M, Pian Q, Yao R, Ducros N, Intes X.

Opt Lett. 2018 Sep 15;43(18):4370-4373. doi: 10.1364/OL.43.004370.

12.

Quantitative imaging of receptor-ligand engagement in intact live animals.

Rudkouskaya A, Sinsuebphon N, Ward J, Tubbesing K, Intes X, Barroso M.

J Control Release. 2018 Sep 28;286:451-459. doi: 10.1016/j.jconrel.2018.07.032. Epub 2018 Jul 20.

13.

Comparison of illumination geometry for lifetime-based measurements in whole-body preclinical imaging.

Sinsuebphon N, Rudkouskaya A, Barroso M, Intes X.

J Biophotonics. 2018 Oct;11(10):e201800037. doi: 10.1002/jbio.201800037. Epub 2018 Jun 28.

14.

Radiative transfer with delta-Eddington-type phase functions.

Han W, Long F, Cong W, Intes X, Wang G.

Appl Math Comput. 2017 May 1;300:70-78. doi: 10.1016/j.amc.2016.12.001. Epub 2016 Dec 26.

15.

Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging.

Pian Q, Yao R, Sinsuebphon N, Intes X.

Nat Photonics. 2017;11:411-414. doi: 10.1038/NPHOTON.2017.82. Epub 2017 Jun 5.

16.

Optical tomographic imaging for breast cancer detection.

Cong W, Intes X, Wang G.

J Biomed Opt. 2017 Sep;22(9):1-6. doi: 10.1117/1.JBO.22.9.096011.

17.

Improving mesoscopic fluorescence molecular tomography through data reduction.

Yang F, Ozturk MS, Yao R, Intes X.

Biomed Opt Express. 2017 Jul 28;8(8):3868-3881. doi: 10.1364/BOE.8.003868. eCollection 2017 Aug 1.

18.

Dental optical tomography with upconversion nanoparticles-a feasibility study.

Long F, Intes X.

J Biomed Opt. 2017 Jun 1;22(6):66001. doi: 10.1117/1.JBO.22.6.066001.

19.

Objective Surgical Skill Differentiation for Physical and Virtual Surgical Trainers via Functional Near-Infrared Spectroscopy.

Nemani A, Ahn W, Gee D, Intes X, Schwaitzberg S, Yucel M, De S.

Stud Health Technol Inform. 2016;220:256-61.

PMID:
27046588
20.

Radiative transfer equation modeling by streamline diffusion modified continuous Galerkin method.

Long F, Li F, Intes X, Kotha SP.

J Biomed Opt. 2016 Mar;21(3):36003. doi: 10.1117/1.JBO.21.3.036003.

21.

Generalized mesh-based Monte Carlo for wide-field illumination and detection via mesh retessellation.

Yao R, Intes X, Fang Q.

Biomed Opt Express. 2015 Dec 18;7(1):171-84. doi: 10.1364/BOE.7.000171. eCollection 2016 Jan 1.

22.

Wide-field fluorescence molecular tomography with compressive sensing based preconditioning.

Yao R, Pian Q, Intes X.

Biomed Opt Express. 2015 Nov 17;6(12):4887-98. doi: 10.1364/BOE.6.004887. eCollection 2015 Dec 1.

23.

Temporal Data Set Reduction Based on D-Optimality for Quantitative FLIM-FRET Imaging.

Omer T, Intes X, Hahn J.

PLoS One. 2015 Dec 11;10(12):e0144421. doi: 10.1371/journal.pone.0144421. eCollection 2015.

24.

Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues.

Ozturk MS, Chen CW, Ji R, Zhao L, Nguyen BN, Fisher JP, Chen Y, Intes X.

Ann Biomed Eng. 2016 Mar;44(3):667-79. doi: 10.1007/s10439-015-1511-4. Epub 2015 Dec 8.

25.

Mesh Optimization for Monte Carlo-Based Optical Tomography.

Edmans A, Intes X.

Photonics. 2015 Jun;2(2):375-391. Epub 2015 Apr 9.

26.

Assessment of Gate Width Size on Lifetime-Based Förster Resonance Energy Transfer Parameter Estimation.

Chen SJ, Sinsuebphon N, Intes X.

Photonics. 2015 Dec;2(4):1027-1042. Epub 2015 Sep 28.

27.

Hyperspectral time-resolved wide-field fluorescence molecular tomography based on structured light and single-pixel detection.

Pian Q, Yao R, Zhao L, Intes X.

Opt Lett. 2015 Feb 1;40(3):431-4. doi: 10.1364/OL.40.000431.

28.

Reduced temporal sampling effect on accuracy of time-domain fluorescence lifetime Förster resonance energy transfer.

Omer T, Zhao L, Intes X, Hahn J.

J Biomed Opt. 2014 Aug;19(8):086023. doi: 10.1117/1.JBO.19.8.086023.

29.

High-resolution mesoscopic fluorescence molecular tomography based on compressive sensing.

Yang F, Ozturk MS, Zhao L, Cong W, Wang G, Intes X.

IEEE Trans Biomed Eng. 2015 Jan;62(1):248-55. doi: 10.1109/TBME.2014.2347284. Epub 2014 Aug 15.

30.

L(p) regularization for early gate fluorescence molecular tomography.

Zhao L, Yang H, Cong W, Wang G, Intes X.

Opt Lett. 2014 Jul 15;39(14):4156-9. doi: 10.1364/OL.39.004156.

31.
32.

Spatial light modulator based active wide-field illumination for ex vivo and in vivo quantitative NIR FRET imaging.

Zhao L, Abe K, Rajoria S, Pian Q, Barroso M, Intes X.

Biomed Opt Express. 2014 Feb 27;5(3):944-60. doi: 10.1364/BOE.5.000944. eCollection 2014 Mar 1.

33.

Mesoscopic fluorescence tomography of a photosensitizer (HPPH) 3D biodistribution in skin cancer.

Ozturk MS, Rohrbach D, Sunar U, Intes X.

Acad Radiol. 2014 Feb;21(2):271-80. doi: 10.1016/j.acra.2013.11.009. Review.

PMID:
24439340
34.

FLIM-FRET for Cancer Applications.

Rajoria S, Zhao L, Intes X, Barroso M.

Curr Mol Imaging. 2014;3(2):144-161.

35.

Non-invasive in vivo imaging of near infrared-labeled transferrin in breast cancer cells and tumors using fluorescence lifetime FRET.

Abe K, Zhao L, Periasamy A, Intes X, Barroso M.

PLoS One. 2013 Nov 21;8(11):e80269. doi: 10.1371/journal.pone.0080269. eCollection 2013.

36.

Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue.

Ozturk MS, Lee VK, Zhao L, Dai G, Intes X.

J Biomed Opt. 2013 Oct;18(10):100501. doi: 10.1117/1.JBO.18.10.100501.

37.

Active wide-field illumination for high-throughput fluorescence lifetime imaging.

Zhao L, Abe K, Barroso M, Intes X.

Opt Lett. 2013 Oct 1;38(19):3976-9. doi: 10.1364/OL.38.003976.

38.

Adaptive wide-field optical tomography.

Venugopal V, Intes X.

J Biomed Opt. 2013 Mar;18(3):036006. doi: 10.1117/1.JBO.18.3.036006.

39.

Quantitative tomographic imaging of intermolecular FRET in small animals.

Venugopal V, Chen J, Barroso M, Intes X.

Biomed Opt Express. 2012 Dec 1;3(12):3161-75. doi: 10.1364/BOE.3.003161. Epub 2012 Nov 8.

40.

Mesh-based Monte Carlo method in time-domain widefield fluorescence molecular tomography.

Chen J, Fang Q, Intes X.

J Biomed Opt. 2012 Oct;17(10):106009. doi: 10.1117/1.JBO.17.10.106009.

41.

Ex vivo fluorescence molecular tomography of the spine.

Pimpalkhare M, Chen J, Venugopal V, Intes X.

Int J Biomed Imaging. 2012;2012:942326. doi: 10.1155/2012/942326. Epub 2012 Nov 8.

42.

The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds.

Zhao L, Lee VK, Yoo SS, Dai G, Intes X.

Biomaterials. 2012 Jul;33(21):5325-32. doi: 10.1016/j.biomaterials.2012.04.004. Epub 2012 Apr 22.

43.

Comparison of Monte Carlo methods for fluorescence molecular tomography-computational efficiency.

Chen J, Intes X.

Med Phys. 2011 Oct;38(10):5788-98. doi: 10.1118/1.3641827.

44.

Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates.

Chen J, Venugopal V, Intes X.

Biomed Opt Express. 2011 Mar 14;2(4):871-86. doi: 10.1364/BOE.2.000871.

45.
46.

Full-field time-resolved fluorescence tomography of small animals.

Venugopal V, Chen J, Lesage F, Intes X.

Opt Lett. 2010 Oct 1;35(19):3189-91. doi: 10.1364/OL.35.003189.

PMID:
20890329
47.

Time-resolved diffuse optical tomography with patterned-light illumination and detection.

Chen J, Venugopal V, Lesage F, Intes X.

Opt Lett. 2010 Jul 1;35(13):2121-3. doi: 10.1364/OL.35.002121.

48.

Real-time diffuse optical tomography based on structured illumination.

Bélanger S, Abran M, Intes X, Casanova C, Lesage F.

J Biomed Opt. 2010 Jan-Feb;15(1):016006. doi: 10.1117/1.3290818.

49.

Time-gated perturbation Monte Carlo for whole body functional imaging in small animals.

Chen J, Intes X.

Opt Express. 2009 Oct 26;17(22):19566-79. doi: 10.1364/OE.17.019566.

50.

Pharmacokinetic-rate images of indocyanine green for breast tumors using near-infrared optical methods.

Alacam B, Yazici B, Intes X, Nioka S, Chance B.

Phys Med Biol. 2008 Feb 21;53(4):837-59. doi: 10.1088/0031-9155/53/4/002. Epub 2008 Jan 15.

PMID:
18263944

Supplemental Content

Support Center