Format

Send to

Choose Destination
Mol Cancer Res. 2019 Jan 4. pii: molcanres.0391.2018. doi: 10.1158/1541-7786.MCR-18-0391. [Epub ahead of print]

Cortactin Phosphorylation by Casein Kinase 2 Regulates Actin-Related Protein 2/3 Complex Activity, Invadopodia Function and Tumor Cell Invasion.

Author information

1
Biochemistry/WVUCI, West Virginia University School of Medicine.
2
Microbiology, Immunology, and Cell Biology, West Virginia University.
3
Otolaryngology/Head and Neck Surgery, West Virginia University.
4
Biology, University of Virginia.
5
Biochemistry/WVUCI, West Virginia University School of Medicine scweed@hsc.wvu.edu.

Abstract

Malregulation of the actin cytoskeleton enhances tumor cell motility and invasion. The actin-binding protein cortactin facilitates branched actin network formation through activation of the actin-related protein (Arp) 2/3 complex. Increased cortactin expression due to gene amplification is observed in head and neck squamous cell carcinoma (HNSCC) and other cancers, corresponding with elevated tumor progression and poor patient outcome. Arp2/3 complex activation is responsible for driving increased migration and extracellular matrix (ECM) degradation by governing invadopodia formation and activity. While cortactin-mediated activation of Arp2/3 complex and invadopodia regulation has been well established, signaling pathways responsible for governing cortactin binding to Arp2/3 are unknown and potentially present a new avenue for anti-invasive therapeutic targeting. Here we identify casein kinase (CK) 2α phosphorylation of cortactin as a negative regulator of Arp2/3 binding. CK2α directly phosphorylates cortactin at a conserved threonine (T24) adjacent to the canonical Arp2/3 binding motif. Phosphorylation of cortactin T24 by CK2α impairs the ability of cortactin to bind Arp2/3 and activate actin nucleation. Decreased invadopodia activity is observed in HNSCC cells with expression of CK2α phosphorylation-null cortactin mutants, shRNA-mediated CK2α knockdown, and with the CK2α inhibitor Silmitasertib. Silmitasertib inhibits HNSCC collective invasion in tumor spheroids and orthotopic tongue tumors in mice. Collectively these data suggest that CK2α-mediated cortactin phosphorylation at T24 is critical in regulating cortactin binding to Arp2/3 complex and pro-invasive activity, identifying a potential targetable mechanism for impairing HNSCC invasion. Implications: This study identifies a new signaling pathway that contributes to enhancing cancer cell invasion.

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center