Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 54

1.

Cannabinoids in the descending pain modulatory circuit: Role in inflammation.

Bouchet CA, Ingram SL.

Pharmacol Ther. 2020 Jan 29:107495. doi: 10.1016/j.pharmthera.2020.107495. [Epub ahead of print] Review.

PMID:
32004514
2.

Amphetamines signal through intracellular TAAR1 receptors coupled to Gα13 and GαS in discrete subcellular domains.

Underhill SM, Hullihen PD, Chen J, Fenollar-Ferrer C, Rizzo MA, Ingram SL, Amara SG.

Mol Psychiatry. 2019 Aug 9. doi: 10.1038/s41380-019-0469-2. [Epub ahead of print]

PMID:
31399635
3.

Lack of Antinociceptive Cross-Tolerance With Co-Administration of Morphine and Fentanyl Into the Periaqueductal Gray of Male Sprague-Dawley Rats.

Bobeck EN, Schoo SM, Ingram SL, Morgan MM.

J Pain. 2019 Sep;20(9):1040-1047. doi: 10.1016/j.jpain.2019.03.002. Epub 2019 Mar 7.

PMID:
30853505
4.

Regulators of G-Protein Signaling (RGS) Proteins Promote Receptor Coupling to G-Protein-Coupled Inwardly Rectifying Potassium (GIRK) Channels.

McPherson KB, Leff ER, Li MH, Meurice C, Tai S, Traynor JR, Ingram SL.

J Neurosci. 2018 Oct 10;38(41):8737-8744. doi: 10.1523/JNEUROSCI.0516-18.2018. Epub 2018 Aug 27.

5.

Neuronal excitatory amino acid transporter EAAT3: Emerging functions in health and disease.

Underhill SM, Ingram SL, Ahmari SE, Veenstra-VanderWeele J, Amara SG.

Neurochem Int. 2019 Feb;123:69-76. doi: 10.1016/j.neuint.2018.05.012. Epub 2018 May 22. No abstract available.

6.

Optogenetic Evidence for a Direct Circuit Linking Nociceptive Transmission through the Parabrachial Complex with Pain-Modulating Neurons of the Rostral Ventromedial Medulla (RVM).

Chen Q, Roeder Z, Li MH, Zhang Y, Ingram SL, Heinricher MM.

eNeuro. 2017 Jun 26;4(3). pii: ENEURO.0202-17.2017. doi: 10.1523/ENEURO.0202-17.2017. eCollection 2017 May-Jun.

7.

Compensatory Activation of Cannabinoid CB2 Receptor Inhibition of GABA Release in the Rostral Ventromedial Medulla in Inflammatory Pain.

Li MH, Suchland KL, Ingram SL.

J Neurosci. 2017 Jan 18;37(3):626-636. doi: 10.1523/JNEUROSCI.1310-16.2016.

8.

Amphetamine and Methamphetamine Increase NMDAR-GluN2B Synaptic Currents in Midbrain Dopamine Neurons.

Li MH, Underhill SM, Reed C, Phillips TJ, Amara SG, Ingram SL.

Neuropsychopharmacology. 2017 Jun;42(7):1539-1547. doi: 10.1038/npp.2016.278. Epub 2016 Dec 15.

9.

Sex Differences in GABAA Signaling in the Periaqueductal Gray Induced by Persistent Inflammation.

Tonsfeldt KJ, Suchland KL, Beeson KA, Lowe JD, Li MH, Ingram SL.

J Neurosci. 2016 Feb 3;36(5):1669-81. doi: 10.1523/JNEUROSCI.1928-15.2016.

10.

Ligand-biased activation of extracellular signal-regulated kinase 1/2 leads to differences in opioid induced antinociception and tolerance.

Bobeck EN, Ingram SL, Hermes SM, Aicher SA, Morgan MM.

Behav Brain Res. 2016 Feb 1;298(Pt B):17-24. doi: 10.1016/j.bbr.2015.10.032. Epub 2015 Oct 20.

11.

GABAergic transmission and enhanced modulation by opioids and endocannabinoids in adult rat rostral ventromedial medulla.

Li MH, Suchland KL, Ingram SL.

J Physiol. 2015 Jan 1;593(1):217-30. doi: 10.1113/jphysiol.2014.275701. Epub 2014 Nov 25.

12.

Amphetamine modulates excitatory neurotransmission through endocytosis of the glutamate transporter EAAT3 in dopamine neurons.

Underhill SM, Wheeler DS, Li M, Watts SD, Ingram SL, Amara SG.

Neuron. 2014 Jul 16;83(2):404-416. doi: 10.1016/j.neuron.2014.05.043.

13.

Change in functional selectivity of morphine with the development of antinociceptive tolerance.

Macey TA, Bobeck EN, Suchland KL, Morgan MM, Ingram SL.

Br J Pharmacol. 2015 Jan;172(2):549-61. doi: 10.1111/bph.12703. Epub 2014 Jul 1.

14.

Contribution of adenylyl cyclase modulation of pre- and postsynaptic GABA neurotransmission to morphine antinociception and tolerance.

Bobeck EN, Chen Q, Morgan MM, Ingram SL.

Neuropsychopharmacology. 2014 Aug;39(9):2142-52. doi: 10.1038/npp.2014.62. Epub 2014 Mar 13.

15.

Pain: novel analgesics from traditional Chinese medicines.

Ingram SL.

Curr Biol. 2014 Feb 3;24(3):R114-6. doi: 10.1016/j.cub.2013.12.030.

16.

Chronic inflammatory pain prevents tolerance to the antinociceptive effect of morphine microinjected into the ventrolateral periaqueductal gray of the rat.

Mehalick ML, Ingram SL, Aicher SA, Morgan MM.

J Pain. 2013 Dec;14(12):1601-10. doi: 10.1016/j.jpain.2013.08.003. Epub 2013 Oct 22.

17.

Differential control of opioid antinociception to thermal stimuli in a knock-in mouse expressing regulator of G-protein signaling-insensitive Gαo protein.

Lamberts JT, Smith CE, Li MH, Ingram SL, Neubig RR, Traynor JR.

J Neurosci. 2013 Mar 6;33(10):4369-77. doi: 10.1523/JNEUROSCI.5470-12.2013.

18.

Regulation of μ-opioid receptors: desensitization, phosphorylation, internalization, and tolerance.

Williams JT, Ingram SL, Henderson G, Chavkin C, von Zastrow M, Schulz S, Koch T, Evans CJ, Christie MJ.

Pharmacol Rev. 2013 Jan 15;65(1):223-54. doi: 10.1124/pr.112.005942. Print 2013 Jan. Review.

19.

Columnar distribution of catecholaminergic neurons in the ventrolateral periaqueductal gray and their relationship to efferent pathways.

Suckow SK, Deichsel EL, Ingram SL, Morgan MM, Aicher SA.

Synapse. 2013 Feb;67(2):94-108. doi: 10.1002/syn.21624. Epub 2012 Nov 28.

20.

Differential development of antinociceptive tolerance to morphine and fentanyl is not linked to efficacy in the ventrolateral periaqueductal gray of the rat.

Bobeck EN, Haseman RA, Hong D, Ingram SL, Morgan MM.

J Pain. 2012 Aug;13(8):799-807. doi: 10.1016/j.jpain.2012.05.005. Epub 2012 Jul 3.

21.

A sensitive membrane-targeted biosensor for monitoring changes in intracellular chloride in neuronal processes.

Watts SD, Suchland KL, Amara SG, Ingram SL.

PLoS One. 2012;7(4):e35373. doi: 10.1371/journal.pone.0035373. Epub 2012 Apr 10.

22.

Chronic psychostimulant exposure to adult, but not periadolescent rats reduces subsequent morphine antinociception.

Cyr MC, Ingram SL, Aicher SA, Morgan MM.

Pharmacol Biochem Behav. 2012 Jun;101(4):538-43. doi: 10.1016/j.pbb.2012.02.018. Epub 2012 Mar 3.

23.

Association of mu-opioid and NMDA receptors in the periaqueductal gray: what does it mean for pain control?

Ingram SL.

Neuropsychopharmacology. 2012 Jan;37(2):315-6. doi: 10.1038/npp.2011.241. No abstract available.

24.

Tolerance to the antinociceptive effect of morphine in the absence of short-term presynaptic desensitization in rat periaqueductal gray neurons.

Fyfe LW, Cleary DR, Macey TA, Morgan MM, Ingram SL.

J Pharmacol Exp Ther. 2010 Dec;335(3):674-80. doi: 10.1124/jpet.110.172643. Epub 2010 Aug 25.

25.

Functional characterization of rhesus embryonic stem cell-derived serotonin neurons.

Tokuyama Y, Ingram SL, Woodward JS, Bethea CL.

Exp Biol Med (Maywood). 2010 May;235(5):649-57. doi: 10.1258/ebm.2010.009307.

26.

Opioid receptor internalization contributes to dermorphin-mediated antinociception.

Macey TA, Ingram SL, Bobeck EN, Hegarty DM, Aicher SA, Arttamangkul S, Morgan MM.

Neuroscience. 2010 Jun 30;168(2):543-50. doi: 10.1016/j.neuroscience.2010.04.003. Epub 2010 Apr 13.

27.
28.

Extracellular signal-regulated kinase 1/2 activation counteracts morphine tolerance in the periaqueductal gray of the rat.

Macey TA, Bobeck EN, Hegarty DM, Aicher SA, Ingram SL, Morgan MM.

J Pharmacol Exp Ther. 2009 Nov;331(2):412-8. doi: 10.1124/jpet.109.152157. Epub 2009 Aug 14.

29.

Glutamate modulation of antinociception, but not tolerance, produced by morphine microinjection into the periaqueductal gray of the rat.

Morgan MM, Bobeck EN, Ingram SL.

Brain Res. 2009 Oct 27;1295:59-66. doi: 10.1016/j.brainres.2009.07.100. Epub 2009 Aug 5.

30.

Behavioral consequences of delta-opioid receptor activation in the periaqueductal gray of morphine tolerant rats.

Morgan MM, Ashley MD, Ingram SL, Christie MJ.

Neural Plast. 2009;2009:516328. doi: 10.1155/2009/516328. Epub 2009 Feb 25.

31.

Contribution of dopamine receptors to periaqueductal gray-mediated antinociception.

Meyer PJ, Morgan MM, Kozell LB, Ingram SL.

Psychopharmacology (Berl). 2009 Jun;204(3):531-40. doi: 10.1007/s00213-009-1482-y. Epub 2009 Feb 19.

32.

Microinjection of the vehicle dimethyl sulfoxide (DMSO) into the periaqueductal gray modulates morphine antinociception.

Fossum EN, Lisowski MJ, Macey TA, Ingram SL, Morgan MM.

Brain Res. 2008 Apr 14;1204:53-8. doi: 10.1016/j.brainres.2008.02.022. Epub 2008 Feb 21.

PMID:
18342296
33.

Tolerance to repeated morphine administration is associated with increased potency of opioid agonists.

Ingram SL, Macey TA, Fossum EN, Morgan MM.

Neuropsychopharmacology. 2008 Sep;33(10):2494-504. Epub 2007 Nov 28.

34.

Analgesic tolerance to microinjection of the micro-opioid agonist DAMGO into the ventrolateral periaqueductal gray.

Meyer PJ, Fossum EN, Ingram SL, Morgan MM.

Neuropharmacology. 2007 Jun;52(8):1580-5. Epub 2007 Mar 12.

35.

Antinociceptive tolerance revealed by cumulative intracranial microinjections of morphine into the periaqueductal gray in the rat.

Morgan MM, Fossum EN, Levine CS, Ingram SL.

Pharmacol Biochem Behav. 2006 Sep;85(1):214-9. Epub 2006 Sep 18.

PMID:
16979226
36.

Behavioral and electrophysiological evidence for opioid tolerance in adolescent rats.

Ingram SL, Fossum EN, Morgan MM.

Neuropsychopharmacology. 2007 Mar;32(3):600-6. Epub 2006 Jun 28.

37.

Intermittent dosing prolongs tolerance to the antinociceptive effect of morphine microinjection into the periaqueductal gray.

Morgan MM, Tierney BW, Ingram SL.

Brain Res. 2005 Oct 19;1059(2):173-8. Epub 2005 Sep 21.

PMID:
16182261
38.

Cellular actions of somatostatin on rat periaqueductal grey neurons in vitro.

Connor M, Bagley EE, Mitchell VA, Ingram SL, Christie MJ, Humphrey PP, Vaughan CW.

Br J Pharmacol. 2004 Aug;142(8):1273-80. Epub 2004 Jul 20.

39.

Dopamine transporter-mediated conductances increase excitability of midbrain dopamine neurons.

Ingram SL, Prasad BM, Amara SG.

Nat Neurosci. 2002 Oct;5(10):971-8.

PMID:
12352983
40.

The multiple LIM domain-containing adaptor protein Hic-5 synaptically colocalizes and interacts with the dopamine transporter.

Carneiro AM, Ingram SL, Beaulieu JM, Sweeney A, Amara SG, Thomas SM, Caron MG, Torres GE.

J Neurosci. 2002 Aug 15;22(16):7045-54.

41.

Cellular and molecular mechanisms of opioid action.

Ingram SL.

Prog Brain Res. 2000;129:483-92. Review. No abstract available.

PMID:
11098712
42.

Cellular actions of opioids and other analgesics: implications for synergism in pain relief.

Christie MJ, Connor M, Vaughan CW, Ingram SL, Bagley EE.

Clin Exp Pharmacol Physiol. 2000 Jul;27(7):520-3. Review.

PMID:
10874510
44.

Opioids, NSAIDs and 5-lipoxygenase inhibitors act synergistically in brain via arachidonic acid metabolism.

Christie MJ, Vaughan CW, Ingram SL.

Inflamm Res. 1999 Jan;48(1):1-4. Review.

PMID:
9987677
45.

Enhanced opioid efficacy in opioid dependence is caused by an altered signal transduction pathway.

Ingram SL, Vaughan CW, Bagley EE, Connor M, Christie MJ.

J Neurosci. 1998 Dec 15;18(24):10269-76.

46.

Sigma-binding site ligands inhibit K+ currents in rat locus coeruleus neurons in vitro.

Nguyen VH, Ingram SL, Kassiou M, Christie MJ.

Eur J Pharmacol. 1998 Nov 13;361(1):157-63.

PMID:
9851553
47.

Cortistatin increase of a potassium conductance in rat locus coeruleus in vitro.

Connor M, Ingram SL, Christie MJ.

Br J Pharmacol. 1997 Dec;122(8):1567-72.

48.

How opioids inhibit GABA-mediated neurotransmission.

Vaughan CW, Ingram SL, Connor MA, Christie MJ.

Nature. 1997 Dec 11;390(6660):611-4.

PMID:
9403690
49.
50.

Responses of adult human dorsal root ganglion neurons in culture to capsaicin and low pH.

Baumann TK, Burchiel KJ, Ingram SL, Martenson ME.

Pain. 1996 Apr;65(1):31-8.

PMID:
8826487

Supplemental Content

Loading ...
Support Center