Format

Send to

Choose Destination
Appl Environ Microbiol. 2020 Jan 7;86(2). pii: e01931-19. doi: 10.1128/AEM.01931-19. Print 2020 Jan 7.

Predatory Organisms with Untapped Biosynthetic Potential: Descriptions of Novel Corallococcus Species C. aberystwythensis sp. nov., C. carmarthensis sp. nov., C. exercitus sp. nov., C. interemptor sp. nov., C. llansteffanensis sp. nov., C. praedator sp. nov., C. sicarius sp. nov., and C. terminator sp. nov.

Author information

1
Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom.
2
Department of Biomedical Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom.
3
Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom dew@aber.ac.uk.

Abstract

Corallococcus spp. are common soil-dwelling organisms which kill and consume prey microbes through the secretion of antimicrobial substances. Two species of Corallococcus have been described previously (Corallococcus coralloides and Corallococcus exiguus). A polyphasic approach, including biochemical analysis of fatty acid methyl esters, substrate utilization, and sugar assimilation assays, was taken to characterize eight Corallococcus species strains and the two type strains. The genomes of all strains, including that of C. exiguus DSM 14696T (newly reported here), shared an average nucleotide identity below 95% and digital DNA-DNA hybridization scores of less than 70%, indicating that they belong to distinct species. In addition, we characterized the prey range and antibiotic resistance profile of each strain, illustrating the diversity of antimicrobial activity and, thus, the potential for drug discovery within the Corallococcus genus. Each strain gave a distinct profile of properties, which together with their genomic differences supports the proposal of the eight candidate strains as novel species. The eight candidates are as follows: Corallococcus exercitus sp. nov. (AB043AT = DSM 108849T = NBRC 113887T), Corallococcus interemptor sp. nov. (AB047AT = DSM 108843T = NBRC 113888T), Corallococcus aberystwythensis sp. nov. (AB050AT = DSM 108846T = NBRC 114019T), Corallococcus praedator sp. nov. (CA031BT = DSM 108841T = NBRC 113889T), Corallococcus sicarius sp. nov. (CA040BT = DSM 108850T = NBRC 113890T), Corallococcus carmarthensis sp. nov. (CA043DT = DSM 108842T = NBRC 113891T), Corallococcus llansteffanensis sp. nov. (CA051BT = DSM 108844T = NBRC 114100T), and Corallococcus terminator sp. nov. (CA054AT = DSM 108848T = NBRC 113892T).IMPORTANCE Corallococcus is a genus of predators with broad prey ranges, whose genomes contain large numbers of gene clusters for secondary metabolite biosynthesis. The physiology and evolutionary heritage of eight Corallococcus species strains were characterized using a range of analyses and assays. Multiple metrics confirmed that each strain belonged to a novel species within the Corallococcus genus. The strains exhibited distinct patterns of drug resistance and predatory activity, which mirrored their possession of diverse sets of biosynthetic genes. The breadth of antimicrobial activities observed within the Corallococcus genus highlights their potential for drug discovery and suggests a previous underestimation of both their taxonomic diversity and biotechnological potential. Taxonomic assignment of environmental isolates to novel species allows us to begin to characterize the diversity and evolution of members of this bacterial genus with potential biotechnological importance, guiding future bioprospecting efforts for novel biologically active metabolites and antimicrobials.

KEYWORDS:

comparative genomics; myxobacteria; predation; predator; prey

PMID:
31676482
PMCID:
PMC6952226
[Available on 2020-07-07]
DOI:
10.1128/AEM.01931-19

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center