Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 12

1.

Spatiotemporal constraints on optogenetic inactivation in cortical circuits.

Li N, Chen S, Guo ZV, Chen H, Huo Y, Inagaki HK, Chen G, Davis C, Hansel D, Guo C, Svoboda K.

Elife. 2019 Nov 18;8. pii: e48622. doi: 10.7554/eLife.48622.

2.

Discrete attractor dynamics underlies persistent activity in the frontal cortex.

Inagaki HK, Fontolan L, Romani S, Svoboda K.

Nature. 2019 Feb;566(7743):212-217. doi: 10.1038/s41586-019-0919-7. Epub 2019 Feb 6.

PMID:
30728503
3.

Low-Dimensional and Monotonic Preparatory Activity in Mouse Anterior Lateral Motor Cortex.

Inagaki HK, Inagaki M, Romani S, Svoboda K.

J Neurosci. 2018 Apr 25;38(17):4163-4185. doi: 10.1523/JNEUROSCI.3152-17.2018. Epub 2018 Mar 28.

4.

Maintenance of persistent activity in a frontal thalamocortical loop.

Guo ZV, Inagaki HK, Daie K, Druckmann S, Gerfen CR, Svoboda K.

Nature. 2017 May 11;545(7653):181-186. doi: 10.1038/nature22324. Epub 2017 May 3.

5.

P1 interneurons promote a persistent internal state that enhances inter-male aggression in Drosophila.

Hoopfer ED, Jung Y, Inagaki HK, Rubin GM, Anderson DJ.

Elife. 2015 Dec 29;4. pii: e11346. doi: 10.7554/eLife.11346.

6.

Independent, reciprocal neuromodulatory control of sweet and bitter taste sensitivity during starvation in Drosophila.

Inagaki HK, Panse KM, Anderson DJ.

Neuron. 2014 Nov 19;84(4):806-20. doi: 10.1016/j.neuron.2014.09.032. Epub 2014 Oct 30.

7.

Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship.

Inagaki HK, Jung Y, Hoopfer ED, Wong AM, Mishra N, Lin JY, Tsien RY, Anderson DJ.

Nat Methods. 2014 Mar;11(3):325-32. doi: 10.1038/nmeth.2765. Epub 2013 Dec 22.

8.

Visualizing neuromodulation in vivo: TANGO-mapping of dopamine signaling reveals appetite control of sugar sensing.

Inagaki HK, Ben-Tabou de-Leon S, Wong AM, Jagadish S, Ishimoto H, Barnea G, Kitamoto T, Axel R, Anderson DJ.

Cell. 2012 Feb 3;148(3):583-95. doi: 10.1016/j.cell.2011.12.022. Erratum in: Cell. 2012 Mar 2;148(5):1065.

9.

Protocol for quantifying sound-sensing ability of Drosophila melanogaster.

Inagaki HK, Kamikouchi A, Ito K.

Nat Protoc. 2010 Jan;5(1):26-30. doi: 10.1038/nprot.2009.206.

PMID:
20010725
10.

Methods for quantifying simple gravity sensing in Drosophila melanogaster.

Inagaki HK, Kamikouchi A, Ito K.

Nat Protoc. 2010 Jan;5(1):20-5. doi: 10.1038/nprot.2009.196.

PMID:
20010724
11.

[Application of Drosophila as an integrative neural model to understand how sound, gravity, and wind information are processed in the brain].

Kamikouchi A, Inagaki HK, Yorozu S, Ito K.

Tanpakushitsu Kakusan Koso. 2009 Nov;54(14):1817-26. Review. Japanese. No abstract available.

PMID:
19894582
12.

The neural basis of Drosophila gravity-sensing and hearing.

Kamikouchi A, Inagaki HK, Effertz T, Hendrich O, Fiala A, Göpfert MC, Ito K.

Nature. 2009 Mar 12;458(7235):165-71. doi: 10.1038/nature07810.

PMID:
19279630

Supplemental Content

Loading ...
Support Center