Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 28

1.

Structural Basis for Plant MADS Transcription Factor Oligomerization.

Lai X, Daher H, Galien A, Hugouvieux V, Zubieta C.

Comput Struct Biotechnol J. 2019 Jun 14;17:946-953. doi: 10.1016/j.csbj.2019.06.014. eCollection 2019. Review.

2.

Pioneer Factors in Animals and Plants-Colonizing Chromatin for Gene Regulation.

Lai X, Verhage L, Hugouvieux V, Zubieta C.

Molecules. 2018 Jul 31;23(8). pii: E1914. doi: 10.3390/molecules23081914. Review.

3.

MADS transcription factors cooperate: complexities of complex formation.

Hugouvieux V, Zubieta C.

J Exp Bot. 2018 Apr 9;69(8):1821-1823. doi: 10.1093/jxb/ery099. No abstract available.

4.

Tetramerization of MADS family transcription factors SEPALLATA3 and AGAMOUS is required for floral meristem determinacy in Arabidopsis.

Hugouvieux V, Silva CS, Jourdain A, Stigliani A, Charras Q, Conn V, Conn SJ, Carles CC, Parcy F, Zubieta C.

Nucleic Acids Res. 2018 Jun 1;46(10):4966-4977. doi: 10.1093/nar/gky205.

5.

Structuring polymer gels via catalytic reactions.

Hugouvieux V, Kob W.

Soft Matter. 2017 Nov 29;13(46):8706-8716. doi: 10.1039/c7sm01814b.

PMID:
29130096
6.

A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation.

Conn VM, Hugouvieux V, Nayak A, Conos SA, Capovilla G, Cildir G, Jourdain A, Tergaonkar V, Schmid M, Zubieta C, Conn SJ.

Nat Plants. 2017 Apr 18;3:17053. doi: 10.1038/nplants.2017.53.

PMID:
28418376
7.

Evolution of the Plant Reproduction Master Regulators LFY and the MADS Transcription Factors: The Role of Protein Structure in the Evolutionary Development of the Flower.

Silva CS, Puranik S, Round A, Brennich M, Jourdain A, Parcy F, Hugouvieux V, Zubieta C.

Front Plant Sci. 2016 Jan 6;6:1193. doi: 10.3389/fpls.2015.01193. eCollection 2015.

8.

Multiblock copolymer solutions in contact with a surface: self-assembly, adsorption, and percolation.

Hugouvieux V, Kolb M.

Langmuir. 2014 Oct 21;30(41):12400-10. doi: 10.1021/la502945k. Epub 2014 Oct 6.

PMID:
25285477
9.

Biochemical and biophysical characterization of the selenium-binding and reducing site in Arabidopsis thaliana homologue to mammals selenium-binding protein 1.

Schild F, Kieffer-Jaquinod S, Palencia A, Cobessi D, Sarret G, Zubieta C, Jourdain A, Dumas R, Forge V, Testemale D, Bourguignon J, Hugouvieux V.

J Biol Chem. 2014 Nov 14;289(46):31765-76. doi: 10.1074/jbc.M114.571208. Epub 2014 Oct 1.

10.

How to gain insight into the polydispersity of tannins: a combined MS and LC study.

Mouls L, Hugouvieux V, Mazauric JP, Sommerer N, Mazerolles G, Fulcrand H.

Food Chem. 2014 Dec 15;165:348-53. doi: 10.1016/j.foodchem.2014.05.121. Epub 2014 Jun 2.

PMID:
25038686
11.

Uranium perturbs signaling and iron uptake response in Arabidopsis thaliana roots.

Doustaly F, Combes F, Fiévet JB, Berthet S, Hugouvieux V, Bastien O, Aranjuelo I, Leonhardt N, Rivasseau C, Carrière M, Vavasseur A, Renou JP, Vandenbrouck Y, Bourguignon J.

Metallomics. 2014 Apr;6(4):809-21. doi: 10.1039/c4mt00005f.

PMID:
24549117
12.

Probing the micellar solubilisation and inter-micellar exchange of polyphenols using the DPPH· free radical.

Laguerre M, Hugouvieux V, Cavusoglu N, Aubert F, Lafuma A, Fulcrand H, Poncet-Legrand C.

Food Chem. 2014 Apr 15;149:114-20. doi: 10.1016/j.foodchem.2013.10.034. Epub 2013 Oct 17.

PMID:
24295684
13.

Evidence for functional interaction between brassinosteroids and cadmium response in Arabidopsis thaliana.

Villiers F, Jourdain A, Bastien O, Leonhardt N, Fujioka S, Tichtincky G, Parcy F, Bourguignon J, Hugouvieux V.

J Exp Bot. 2012 Feb;63(3):1185-200. doi: 10.1093/jxb/err335. Epub 2011 Nov 29.

PMID:
22131160
14.

Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches.

Villiers F, Ducruix C, Hugouvieux V, Jarno N, Ezan E, Garin J, Junot C, Bourguignon J.

Proteomics. 2011 May;11(9):1650-63. doi: 10.1002/pmic.201000645. Epub 2011 Apr 4. Review.

PMID:
21462346
15.

Arabidopsis putative selenium-binding protein1 expression is tightly linked to cellular sulfur demand and can reduce sensitivity to stresses requiring glutathione for tolerance.

Hugouvieux V, Dutilleul C, Jourdain A, Reynaud F, Lopez V, Bourguignon J.

Plant Physiol. 2009 Oct;151(2):768-81. doi: 10.1104/pp.109.144808. Epub 2009 Aug 26.

16.

mRNA cap binding proteins: effects on abscisic acid signal transduction, mRNA processing, and microarray analyses.

Kuhn JM, Hugouvieux V, Schroeder JI.

Curr Top Microbiol Immunol. 2008;326:139-50. Review.

PMID:
18630751
17.

The Arabidopsis putative selenium-binding protein family: expression study and characterization of SBP1 as a potential new player in cadmium detoxification processes.

Dutilleul C, Jourdain A, Bourguignon J, Hugouvieux V.

Plant Physiol. 2008 May;147(1):239-51. doi: 10.1104/pp.107.114033. Epub 2008 Mar 19.

18.

A Proteomics Approach Highlights a Myriad of Transporters in the Arabidopsis thaliana Vacuolar Membrane.

Jaquinod M, Villiers F, Kieffer-Jaquinod S, Hugouvieux V, Bruley C, Garin J, Bourguignon J.

Plant Signal Behav. 2007 Sep;2(5):413-5.

19.

A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture.

Jaquinod M, Villiers F, Kieffer-Jaquinod S, Hugouvieux V, Bruley C, Garin J, Bourguignon J.

Mol Cell Proteomics. 2007 Mar;6(3):394-412. Epub 2006 Dec 6.

20.

Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots.

Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette ML, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou JP, Vavasseur A, Leonhardt N.

Biochimie. 2006 Nov;88(11):1751-65. Epub 2006 Jun 6. Review.

PMID:
16797112
21.

The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses.

Sarry JE, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet JB, Vailhen D, Amekraz B, Moulin C, Ezan E, Garin J, Bourguignon J.

Proteomics. 2006 Apr;6(7):2180-98.

PMID:
16502469
22.

Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells.

Klüsener B, Young JJ, Murata Y, Allen GJ, Mori IC, Hugouvieux V, Schroeder JI.

Plant Physiol. 2002 Dec;130(4):2152-63.

23.

Localization, ion channel regulation, and genetic interactions during abscisic acid signaling of the nuclear mRNA cap-binding protein, ABH1.

Hugouvieux V, Murata Y, Young JJ, Kwak JM, Mackesy DZ, Schroeder JI.

Plant Physiol. 2002 Nov;130(3):1276-87.

24.
25.

GUARD CELL SIGNAL TRANSDUCTION.

Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D.

Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:627-658.

PMID:
11337411
26.

Effects of targeted replacement of the tomatinase gene on the interaction of Septoria lycopersici with tomato plants.

Martin-Hernandez AM, Dufresne M, Hugouvieux V, Melton R, Osbourn A.

Mol Plant Microbe Interact. 2000 Dec;13(12):1301-11.

28.

Induction by (alpha)-L-Arabinose and (alpha)-L-Rhamnose of Endopolygalacturonase Gene Expression in Colletotrichum lindemuthianum.

Hugouvieux V, Centis S, Lafitte C, Esquerre-Tugaye M.

Appl Environ Microbiol. 1997 Jun;63(6):2287-92.

Supplemental Content

Loading ...
Support Center