Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 100

2.

Elucidating factors important for monovalent cation selectivity in enzymes: E. coli β-galactosidase as a model.

Wheatley RW, Juers DH, Lev BB, Huber RE, Noskov SY.

Phys Chem Chem Phys. 2015 Apr 28;17(16):10899-909. doi: 10.1039/c4cp04952g.

PMID:
25820412
3.

Neural correlates of informational cascades: brain mechanisms of social influence on belief updating.

Huber RE, Klucharev V, Rieskamp J.

Soc Cogn Affect Neurosci. 2015 Apr;10(4):589-97. doi: 10.1093/scan/nsu090. Epub 2014 Jun 28.

4.

Structural explanation for allolactose (lac operon inducer) synthesis by lacZ β-galactosidase and the evolutionary relationship between allolactose synthesis and the lac repressor.

Wheatley RW, Lo S, Jancewicz LJ, Dugdale ML, Huber RE.

J Biol Chem. 2013 May 3;288(18):12993-3005. doi: 10.1074/jbc.M113.455436. Epub 2013 Mar 13.

5.

LacZ β-galactosidase: structure and function of an enzyme of historical and molecular biological importance.

Juers DH, Matthews BW, Huber RE.

Protein Sci. 2012 Dec;21(12):1792-807. doi: 10.1002/pro.2165. Epub 2012 Nov 13. Review.

6.

Substitution for Asn460 cripples β-galactosidase (Escherichia coli) by increasing substrate affinity and decreasing transition state stability.

Wheatley RW, Kappelhoff JC, Hahn JN, Dugdale ML, Dutkoski MJ, Tamman SD, Fraser ME, Huber RE.

Arch Biochem Biophys. 2012 May;521(1-2):51-61. doi: 10.1016/j.abb.2012.03.014. Epub 2012 Mar 22.

PMID:
22446164
7.

Ser-796 of β-galactosidase (Escherichia coli) plays a key role in maintaining a balance between the opened and closed conformations of the catalytically important active site loop.

Jancewicz LJ, Wheatley RW, Sutendra G, Lee M, Fraser ME, Huber RE.

Arch Biochem Biophys. 2012 Jan 15;517(2):111-22. doi: 10.1016/j.abb.2011.11.017. Epub 2011 Dec 1.

PMID:
22155115
8.

Importance of Arg-599 of β-galactosidase (Escherichia coli) as an anchor for the open conformations of Phe-601 and the active-site loop.

Dugdale ML, Vance ML, Wheatley RW, Driedger MR, Nibber A, Tran A, Huber RE.

Biochem Cell Biol. 2010 Dec;88(6):969-79. doi: 10.1139/O10-144.

PMID:
21102659
9.

Role of Met-542 as a guide for the conformational changes of Phe-601 that occur during the reaction of β-galactosidase (Escherichia coli).

Dugdale ML, Dymianiw DL, Minhas BK, D'Angelo I, Huber RE.

Biochem Cell Biol. 2010 Oct;88(5):861-9. doi: 10.1139/O10-009.

PMID:
20921997
11.

Direct and indirect roles of His-418 in metal binding and in the activity of beta-galactosidase (E. coli).

Juers DH, Rob B, Dugdale ML, Rahimzadeh N, Giang C, Lee M, Matthews BW, Huber RE.

Protein Sci. 2009 Jun;18(6):1281-92. doi: 10.1002/pro.140.

12.

Practical considerations when using temperature to obtain rate constants and activation thermodynamics of enzymes with two catalytic steps: native and N460T-beta-galactosidase (E. coli) as examples.

Kappelhoff JC, Liu SY, Dugdale ML, Dymianiw DL, Linton LR, Huber RE.

Protein J. 2009 Feb;28(2):96-103. doi: 10.1007/s10930-009-9168-1.

PMID:
19229596
13.

Beta-galactosidase (Escherichia coli) has a second catalytically important Mg2+ site.

Sutendra G, Wong S, Fraser ME, Huber RE.

Biochem Biophys Res Commun. 2007 Jan 12;352(2):566-70. Epub 2006 Nov 20.

PMID:
17126292
14.
15.

Gata3 participates in a complex transcriptional feedback network to regulate sympathoadrenal differentiation.

Moriguchi T, Takako N, Hamada M, Maeda A, Fujioka Y, Kuroha T, Huber RE, Hasegawa SL, Rao A, Yamamoto M, Takahashi S, Lim KC, Engel JD.

Development. 2006 Oct;133(19):3871-81. Epub 2006 Aug 30.

16.
18.
19.
20.
21.

Structural basis for the altered activity of Gly794 variants of Escherichia coli beta-galactosidase.

Juers DH, Hakda S, Matthews BW, Huber RE.

Biochemistry. 2003 Nov 25;42(46):13505-11.

PMID:
14621996
23.
24.
25.

His-391 of beta-galactosidase (Escherichia coli) promotes catalyses by strong interactions with the transition state.

Huber RE, Hlede IY, Roth NJ, McKenzie KC, Ghumman KK.

Biochem Cell Biol. 2001;79(2):183-93.

PMID:
11310566
26.
27.

Tyr-503 of beta-galactosidase (Escherichia coli) plays an important role in degalactosylation.

Penner RM, Roth NJ, Rob B, Lay H, Huber RE.

Biochem Cell Biol. 1999;77(3):229-36.

PMID:
10505794
30.
31.

Studies of the M15 beta-galactosidase complementation process.

Gallagher CN, Huber RE.

J Protein Chem. 1998 Feb;17(2):131-41.

PMID:
9535275
32.

Monomer-dimer equilibrium of uncomplemented M15 beta-galactosidase from Escherichia coli.

Gallagher CN, Huber RE.

Biochemistry. 1997 Feb 11;36(6):1281-6.

PMID:
9063875
38.

The activation of beta-galactosidase (E. coli) by Mg(2+) at lower pH values.

Martinez-Bilbao M, Huber RE.

Biochem Cell Biol. 1996;74(2):295-8.

PMID:
9213440
39.

E461H-beta-galactosidase (Escherichia coli): altered divalent metal specificity and slow but reversible metal inactivation.

Martinez-Bilbao M, Gaunt MT, Huber RE.

Biochemistry. 1995 Oct 17;34(41):13437-42.

PMID:
7577931
40.
41.
42.

Site directed substitutions suggest that His-418 of beta-galactosidase (E. coli) is a ligand to Mg2+.

Roth NJ, Huber RE.

Biochem Biophys Res Commun. 1994 Jun 15;201(2):866-70.

PMID:
8003024
43.
44.

The active site and mechanism of the beta-galactosidase from Escherichia coli.

Huber RE, Gupta MN, Khare SK.

Int J Biochem. 1994 Mar;26(3):309-18. Review. No abstract available.

PMID:
8187928
46.

The properties of beta-galactosidases (Escherichia coli) with halogenated tyrosines.

Ring M, Huber RE.

Biochem Cell Biol. 1993 Mar-Apr;71(3-4):127-32.

PMID:
8398070
47.
49.

A highly reactive beta-galactosidase (Escherichia coli) resulting from a substitution of an aspartic acid for Gly-794.

Martinez-Bilbao M, Holdsworth RE, Edwards LA, Huber RE.

J Biol Chem. 1991 Mar 15;266(8):4979-86.

50.

Thermal denaturation of beta-galactosidase and of two site-specific mutants.

Edwards RA, Jacobson AL, Huber RE.

Biochemistry. 1990 Dec 11;29(49):11001-8.

PMID:
2125499

Supplemental Content

Loading ...
Support Center