Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 33

1.

Shear stress-induced nuclear shrinkage through activation of Piezo1 channels in epithelial cells.

Jetta D, Gottlieb PA, Verma D, Sachs F, Hua SZ.

J Cell Sci. 2019 Jun 12;132(11). pii: jcs226076. doi: 10.1242/jcs.226076.

PMID:
31076516
2.

Enantiomeric Aβ peptides inhibit the fluid shear stress response of PIEZO1.

Maneshi MM, Ziegler L, Sachs F, Hua SZ, Gottlieb PA.

Sci Rep. 2018 Sep 24;8(1):14267. doi: 10.1038/s41598-018-32572-2.

3.

Heterogeneous Cytoskeletal Force Distribution Delineates the Onset Ca2+ Influx Under Fluid Shear Stress in Astrocytes.

Maneshi MM, Sachs F, Hua SZ.

Front Cell Neurosci. 2018 Mar 16;12:69. doi: 10.3389/fncel.2018.00069. eCollection 2018.

4.

E-cadherin mediated lateral interactions between neighbor cells necessary for collective migration.

Suffoletto K, Jetta D, Hua SZ.

J Biomech. 2018 Apr 11;71:159-166. doi: 10.1016/j.jbiomech.2018.02.002. Epub 2018 Feb 10.

PMID:
29486895
5.

Updated meta-analysis of controlled observational studies: proton-pump inhibitors and risk of Clostridium difficile infection.

Cao F, Chen CX, Wang M, Liao HR, Wang MX, Hua SZ, Huang B, Xiong Y, Zhang JY, Xu YL.

J Hosp Infect. 2018 Jan;98(1):4-13. doi: 10.1016/j.jhin.2017.08.017. Epub 2017 Aug 24. Review.

PMID:
28842261
6.

Flow induced adherens junction remodeling driven by cytoskeletal forces.

Verma D, Bajpai VK, Ye N, Maneshi MM, Jetta D, Andreadis ST, Sachs F, Hua SZ.

Exp Cell Res. 2017 Oct 15;359(2):327-336. doi: 10.1016/j.yexcr.2017.08.009. Epub 2017 Aug 10.

PMID:
28803065
7.

A Microfluidic Approach for Studying Piezo Channels.

Maneshi MM, Gottlieb PA, Hua SZ.

Curr Top Membr. 2017;79:309-334. doi: 10.1016/bs.ctm.2016.11.005. Epub 2017 Jan 18. Review.

PMID:
28728822
8.

Mechanical stress activates NMDA receptors in the absence of agonists.

Maneshi MM, Maki B, Gnanasambandam R, Belin S, Popescu GK, Sachs F, Hua SZ.

Sci Rep. 2017 Jan 3;7:39610. doi: 10.1038/srep39610.

9.

Flow-induced focal adhesion remodeling mediated by local cytoskeletal stresses and reorganization.

Verma D, Meng F, Sachs F, Hua SZ.

Cell Adh Migr. 2015;9(6):432-40. doi: 10.1080/19336918.2015.1089379.

10.

Intracellular forces during guided cell growth on micropatterns using FRET measurement.

Suffoletto K, Ye N, Meng F, Verma D, Hua SZ.

J Biomech. 2015 Feb 26;48(4):627-35. doi: 10.1016/j.jbiomech.2014.12.051. Epub 2015 Jan 6.

11.

A Threshold Shear Force for Calcium Influx in an Astrocyte Model of Traumatic Brain Injury.

Maneshi MM, Sachs F, Hua SZ.

J Neurotrauma. 2015 Jul 1;32(13):1020-9. doi: 10.1089/neu.2014.3677. Epub 2015 Apr 10.

12.

Direct observation of α-actinin tension and recruitment at focal adhesions during contact growth.

Ye N, Verma D, Meng F, Davidson MW, Suffoletto K, Hua SZ.

Exp Cell Res. 2014 Sep 10;327(1):57-67. doi: 10.1016/j.yexcr.2014.07.026. Epub 2014 Aug 1.

13.

Contributions of the Na⁺/K⁺-ATPase, NKCC1, and Kir4.1 to hippocampal K⁺ clearance and volume responses.

Larsen BR, Assentoft M, Cotrina ML, Hua SZ, Nedergaard M, Kaila K, Voipio J, MacAulay N.

Glia. 2014 Apr;62(4):608-22. doi: 10.1002/glia.22629. Epub 2014 Jan 30.

14.

Phosphorylation of rat aquaporin-4 at Ser(111) is not required for channel gating.

Assentoft M, Kaptan S, Fenton RA, Hua SZ, de Groot BL, MacAulay N.

Glia. 2013 Jul;61(7):1101-12. doi: 10.1002/glia.22498. Epub 2013 Apr 25.

PMID:
23616425
15.

Mapped! A machinery of degranulation in mast cells. Focus on "Serum- and glucocorticoid-inducible kinase SGK1 regulates reorganization of actin cytoskeleton in mast cells upon degranulation".

Hua SZ.

Am J Physiol Cell Physiol. 2013 Jan 1;304(1):C36-7. doi: 10.1152/ajpcell.00330.2012. Epub 2012 Oct 24. No abstract available.

16.

Interplay between cytoskeletal stresses and cell adaptation under chronic flow.

Verma D, Ye N, Meng F, Sachs F, Rahimzadeh J, Hua SZ.

PLoS One. 2012;7(9):e44167. doi: 10.1371/journal.pone.0044167. Epub 2012 Sep 19.

17.

Shear-induced volume decrease in MDCK cells.

Heo J, Sachs F, Wang J, Hua SZ.

Cell Physiol Biochem. 2012;30(2):395-406. doi: 10.1159/000339033. Epub 2012 Jul 3.

18.

A microfluidic platform for measuring electrical activity across cells.

Bathany C, Beahm DL, Besch S, Sachs F, Hua SZ.

Biomicrofluidics. 2012 Sep 24;6(3):34121. doi: 10.1063/1.4754599. eCollection 2012.

19.

Cholesterol depletion facilitates recovery from hypotonic cell swelling in CHO cells.

Kowalsky GB, Beam D, Oh MJ, Sachs F, Hua SZ, Levitan I.

Cell Physiol Biochem. 2011;28(6):1247-54. doi: 10.1159/000335856. Epub 2011 Dec 16.

20.

Real-time observation of flow-induced cytoskeletal stress in living cells.

Rahimzadeh J, Meng F, Sachs F, Wang J, Verma D, Hua SZ.

Am J Physiol Cell Physiol. 2011 Sep;301(3):C646-52. doi: 10.1152/ajpcell.00099.2011. Epub 2011 Jun 8.

21.

Assay for molecular transport across gap junction channels in one-dimensional cell arrays.

Ye N, Bathany C, Hua SZ.

Lab Chip. 2011 Mar 21;11(6):1096-101. doi: 10.1039/c0lc00350f. Epub 2011 Feb 4.

PMID:
21293824
22.

High throughput assay of diffusion through Cx43 gap junction channels with a microfluidic chip.

Bathany C, Beahm D, Felske JD, Sachs F, Hua SZ.

Anal Chem. 2011 Feb 1;83(3):933-9. doi: 10.1021/ac102658h. Epub 2010 Dec 23.

23.

A mechanosensitive ion channel regulating cell volume.

Hua SZ, Gottlieb PA, Heo J, Sachs F.

Am J Physiol Cell Physiol. 2010 Jun;298(6):C1424-30. doi: 10.1152/ajpcell.00503.2009. Epub 2010 Mar 24.

24.

Spatially resolved shear distribution in microfluidic chip for studying force transduction mechanisms in cells.

Wang J, Heo J, Hua SZ.

Lab Chip. 2010 Jan 21;10(2):235-9. doi: 10.1039/b914874d. Epub 2009 Nov 17.

25.

Two novel monoterpene-chalcone conjugates isolated from the seeds of Alpinia katsumadai.

Hua SZ, Luo JG, Wang XB, Wang JS, Kong LY.

Bioorg Med Chem Lett. 2009 May 15;19(10):2728-30. doi: 10.1016/j.bmcl.2009.03.117. Epub 2009 Mar 28.

PMID:
19362829
26.

An overview of recent strategies in pathogen sensing.

Heo J, Hua SZ.

Sensors (Basel). 2009;9(6):4483-502. doi: 10.3390/s90604483. Epub 2009 Jun 8.

27.

A microfluidic chip for real-time studies of the volume of single cells.

Hua SZ, Pennell T.

Lab Chip. 2009 Jan 21;9(2):251-6. doi: 10.1039/b806003g. Epub 2008 Oct 23.

28.

Contribution of aquaporins to cellular water transport observed by a microfluidic cell volume sensor.

Heo J, Meng F, Hua SZ.

Anal Chem. 2008 Sep 15;80(18):6974-80. doi: 10.1021/ac8008498. Epub 2008 Aug 13.

29.

Dynamic effects of Hg2+-induced changes in cell volume.

Heo J, Meng F, Sachs F, Hua SZ.

Cell Biochem Biophys. 2008;51(1):21-32. doi: 10.1007/s12013-008-9010-y. Epub 2008 Mar 26.

30.

Microfluidic chip to produce temperature jumps for electrophysiology.

Pennell T, Suchyna T, Wang J, Heo J, Felske JD, Sachs F, Hua SZ.

Anal Chem. 2008 Apr 1;80(7):2447-51. doi: 10.1021/ac702169t. Epub 2008 Feb 27.

PMID:
18302344
31.

Volume cytometry: microfluidic sensor for high-throughput screening in real time.

Ateya DA, Sachs F, Gottlieb PA, Besch S, Hua SZ.

Anal Chem. 2005 Mar 1;77(5):1290-4.

PMID:
15732909
32.

Microfluidic actuation using electrochemically generated bubbles.

Hua SZ, Sachs F, Yang DX, Chopra HD.

Anal Chem. 2002 Dec 15;74(24):6392-6.

PMID:
12510764
33.

Cytotoxicity evaluation of antiseptics and antibiotics on cultured human fibroblasts and keratinocytes.

Damour O, Hua SZ, Lasne F, Villain M, Rousselle P, Collombel C.

Burns. 1992 Dec;18(6):479-85.

PMID:
1489497

Supplemental Content

Support Center