Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 23

1.

Trop2 is a driver of metastatic prostate cancer with neuroendocrine phenotype via PARP1.

Hsu EC, Rice MA, Bermudez A, Marques FJG, Aslan M, Liu S, Ghoochani A, Zhang CA, Chen YS, Zlitni A, Kumar S, Nolley R, Habte F, Shen M, Koul K, Peehl DM, Zoubeidi A, Gambhir SS, Kunder CA, Pitteri SJ, Brooks JD, Stoyanova T.

Proc Natl Acad Sci U S A. 2020 Jan 28;117(4):2032-2042. doi: 10.1073/pnas.1905384117. Epub 2020 Jan 13.

2.

PSPC1-interchanged interactions with PTK6 and β-catenin synergize oncogenic subcellular translocations and tumor progression.

Lang YD, Chen HY, Ho CM, Shih JH, Hsu EC, Shen R, Lee YC, Chen JW, Wu CY, Yeh HW, Chen RH, Jou YS.

Nat Commun. 2019 Dec 16;10(1):5716. doi: 10.1038/s41467-019-13665-6.

3.

Loss of Notch1 Activity Inhibits Prostate Cancer Growth and Metastasis and Sensitizes Prostate Cancer Cells to Antiandrogen Therapies.

Rice MA, Hsu EC, Aslan M, Ghoochani A, Su A, Stoyanova T.

Mol Cancer Ther. 2019 Jul;18(7):1230-1242. doi: 10.1158/1535-7163.MCT-18-0804. Epub 2019 Apr 26.

PMID:
31028097
4.

PSPC1 mediates TGF-β1 autocrine signalling and Smad2/3 target switching to promote EMT, stemness and metastasis.

Yeh HW, Hsu EC, Lee SS, Lang YD, Lin YC, Chang CY, Lee SY, Gu DL, Shih JH, Ho CM, Chen CF, Chen CT, Tu PH, Cheng CF, Chen RH, Yang RB, Jou YS.

Nat Cell Biol. 2018 Apr;20(4):479-491. doi: 10.1038/s41556-018-0062-y. Epub 2018 Mar 28.

PMID:
29593326
5.

The Exosome Total Isolation Chip.

Liu F, Vermesh O, Mani V, Ge TJ, Madsen SJ, Sabour A, Hsu EC, Gowrishankar G, Kanada M, Jokerst JV, Sierra RG, Chang E, Lau K, Sridhar K, Bermudez A, Pitteri SJ, Stoyanova T, Sinclair R, Nair VS, Gambhir SS, Demirci U.

ACS Nano. 2017 Nov 28;11(11):10712-10723. doi: 10.1021/acsnano.7b04878. Epub 2017 Nov 1.

6.

Activation of Notch1 synergizes with multiple pathways in promoting castration-resistant prostate cancer.

Stoyanova T, Riedinger M, Lin S, Faltermeier CM, Smith BA, Zhang KX, Going CC, Goldstein AS, Lee JK, Drake JM, Rice MA, Hsu EC, Nowroozizadeh B, Castor B, Orellana SY, Blum SM, Cheng D, Pienta KJ, Reiter RE, Pitteri SJ, Huang J, Witte ON.

Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):E6457-E6466. Epub 2016 Sep 30.

7.

Integrin-linked kinase as a novel molecular switch of the IL-6-NF-κB signaling loop in breast cancer.

Hsu EC, Kulp SK, Huang HL, Tu HJ, Chao MW, Tseng YC, Yang MC, Salunke SB, Sullivan NJ, Chen WC, Zhang J, Teng CM, Fu WM, Sun D, Wicha MS, Shapiro CL, Chen CS.

Carcinogenesis. 2016 Apr;37(4):430-442. doi: 10.1093/carcin/bgw020. Epub 2016 Feb 19.

8.

Non-epigenetic function of HDAC8 in regulating breast cancer stem cells by maintaining Notch1 protein stability.

Chao MW, Chu PC, Chuang HC, Shen FH, Chou CC, Hsu EC, Himmel LE, Huang HL, Tu HJ, Kulp SK, Teng CM, Chen CS.

Oncotarget. 2016 Jan 12;7(2):1796-807. doi: 10.18632/oncotarget.6427.

9.

Preclinical Investigation of the Novel Histone Deacetylase Inhibitor AR-42 in the Treatment of Cancer-Induced Cachexia.

Tseng YC, Kulp SK, Lai IL, Hsu EC, He WA, Frankhouser DE, Yan PS, Mo X, Bloomston M, Lesinski GB, Marcucci G, Guttridge DC, Bekaii-Saab T, Chen CS.

J Natl Cancer Inst. 2015 Oct 12;107(12):djv274. doi: 10.1093/jnci/djv274. Print 2015 Dec.

10.

Function of Integrin-Linked Kinase in Modulating the Stemness of IL-6-Abundant Breast Cancer Cells by Regulating γ-Secretase-Mediated Notch1 Activation in Caveolae.

Hsu EC, Kulp SK, Huang HL, Tu HJ, Salunke SB, Sullivan NJ, Sun D, Wicha MS, Shapiro CL, Chen CS.

Neoplasia. 2015 Jun;17(6):497-508. doi: 10.1016/j.neo.2015.06.001.

11.

Functional Role of mTORC2 versus Integrin-Linked Kinase in Mediating Ser473-Akt Phosphorylation in PTEN-Negative Prostate and Breast Cancer Cell Lines.

Lee SL, Chou CC, Chuang HC, Hsu EC, Chiu PC, Kulp SK, Byrd JC, Chen CS.

PLoS One. 2013 Jun 19;8(6):e67149. doi: 10.1371/journal.pone.0067149. Print 2013. Retraction in: PLoS One. 2018 Aug 9;13(8):e0202299.

12.

Targeting energy metabolic and oncogenic signaling pathways in triple-negative breast cancer by a novel adenosine monophosphate-activated protein kinase (AMPK) activator.

Lee KH, Hsu EC, Guh JH, Yang HC, Wang D, Kulp SK, Shapiro CL, Chen CS.

J Biol Chem. 2011 Nov 11;286(45):39247-58. doi: 10.1074/jbc.M111.264598. Epub 2011 Sep 14.

13.

Identification and characterization of a novel integrin-linked kinase inhibitor.

Lee SL, Hsu EC, Chou CC, Chuang HC, Bai LY, Kulp SK, Chen CS.

J Med Chem. 2011 Sep 22;54(18):6364-74. doi: 10.1021/jm2007744. Epub 2011 Aug 24.

14.

Overlapping high-resolution copy number alterations in cancer genomes identified putative cancer genes in hepatocellular carcinoma.

Chen CF, Hsu EC, Lin KT, Tu PH, Chang HW, Lin CH, Chen YJ, Gu DL, Lin CH, Wu JY, Chen YT, Hsu MT, Jou YS.

Hepatology. 2010 Nov;52(5):1690-701. doi: 10.1002/hep.23847.

PMID:
20799341
15.

Repression of hepatitis B viral gene expression by transcription factor nuclear factor-kappaB.

Lin YC, Hsu EC, Ting LP.

Cell Microbiol. 2009 Apr;11(4):645-60. doi: 10.1111/j.1462-5822.2008.01280.x. Epub 2008 Dec 23.

PMID:
19141126
16.

Suppression of hepatitis B viral gene expression by protein-tyrosine phosphatase PTPN3.

Hsu EC, Lin YC, Hung CS, Huang CJ, Lee MY, Yang SC, Ting LP.

J Biomed Sci. 2007 Nov;14(6):731-44. Epub 2007 Jun 24.

PMID:
17588219
17.

Leptin resistance following over-expression of protein tyrosine phosphatase 1B in liver.

Lam NT, Covey SD, Lewis JT, Oosman S, Webber T, Hsu EC, Cheung AT, Kieffer TJ.

J Mol Endocrinol. 2006 Feb;36(1):163-74.

PMID:
16461936
18.

Mechanism of CD150 (SLAM) down regulation from the host cell surface by measles virus hemagglutinin protein.

Welstead GG, Hsu EC, Iorio C, Bolotin S, Richardson CD.

J Virol. 2004 Sep;78(18):9666-74.

19.

Modified apoptotic molecule (BID) reduces hepatitis C virus infection in mice with chimeric human livers.

Hsu EC, Hsi B, Hirota-Tsuchihara M, Ruland J, Iorio C, Sarangi F, Diao J, Migliaccio G, Tyrrell DL, Kneteman N, Richardson CD.

Nat Biotechnol. 2003 May;21(5):519-25. Epub 2003 Apr 21.

PMID:
12704395
20.

CDw150(SLAM) is a receptor for a lymphotropic strain of measles virus and may account for the immunosuppressive properties of this virus.

Hsu EC, Iorio C, Sarangi F, Khine AA, Richardson CD.

Virology. 2001 Jan 5;279(1):9-21. Erratum in: Virology 2001 Mar 1;281(1):151.

21.

Use of site-specific mutagenesis and monoclonal antibodies to map regions of CD46 that interact with measles virus H protein.

Hsu EC, Sabatinos S, Hoedemaeker FJ, Rose DR, Richardson CD.

Virology. 1999 Jun 5;258(2):314-26.

22.

A single amino acid change in the hemagglutinin protein of measles virus determines its ability to bind CD46 and reveals another receptor on marmoset B cells.

Hsu EC, Sarangi F, Iorio C, Sidhu MS, Udem SA, Dillehay DL, Xu W, Rota PA, Bellini WJ, Richardson CD.

J Virol. 1998 Apr;72(4):2905-16.

23.

Supplemental Content

Support Center