Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 69

1.

Time-conjunctive representations of future events.

Babcock SW, Howard MW, McGuire JT.

Mem Cognit. 2019 Dec 18. doi: 10.3758/s13421-019-00999-1. [Epub ahead of print]

PMID:
31853879
2.

In a Temporally Segmented Experience Hippocampal Neurons Represent Temporally Drifting Context But Not Discrete Segments.

Bladon JH, Sheehan DJ, De Freitas CS, Howard MW.

J Neurosci. 2019 Aug 28;39(35):6936-6952. doi: 10.1523/JNEUROSCI.1420-18.2019. Epub 2019 Jun 28.

3.

Evidence accumulation in a Laplace domain decision space.

Howard MW, Luzardo A, Tiganj Z.

Comput Brain Behav. 2018 Dec;1(3-4):237-251. doi: 10.1007/s42113-018-0016-2. Epub 2018 Nov 8.

4.

Estimating Scale-Invariant Future in Continuous Time.

Tiganj Z, Gershman SJ, Sederberg PB, Howard MW.

Neural Comput. 2019 Apr;31(4):681-709. doi: 10.1162/neco_a_01171. Epub 2019 Feb 14.

5.

A neural microcircuit model for a scalable scale-invariant representation of time.

Liu Y, Tiganj Z, Hasselmo ME, Howard MW.

Hippocampus. 2019 Mar;29(3):260-274. doi: 10.1002/hipo.22994. Epub 2018 Nov 13.

6.

Medial Temporal Lobe Amnesia Is Associated with a Deficit in Recovering Temporal Context.

Palombo DJ, Di Lascio JM, Howard MW, Verfaellie M.

J Cogn Neurosci. 2019 Feb;31(2):236-248. doi: 10.1162/jocn_a_01344. Epub 2018 Sep 21.

PMID:
30240314
7.

Development and Validation of the Microbiology for Health Sciences Concept Inventory.

Seitz HM, Horak REA, Howard MW, Kluckhohn Jones LW, Muth T, Parker C, Rediske AP, Whitehurst MM.

J Microbiol Biol Educ. 2017 Oct 30;18(3). pii: 18.3.54. doi: 10.1128/jmbe.v18i3.1322. eCollection 2017.

8.

The Same Hippocampal CA1 Population Simultaneously Codes Temporal Information over Multiple Timescales.

Mau W, Sullivan DW, Kinsky NR, Hasselmo ME, Howard MW, Eichenbaum H.

Curr Biol. 2018 May 21;28(10):1499-1508.e4. doi: 10.1016/j.cub.2018.03.051. Epub 2018 Apr 26.

9.

Is working memory stored along a logarithmic timeline? Converging evidence from neuroscience, behavior and models.

Singh I, Tiganj Z, Howard MW.

Neurobiol Learn Mem. 2018 Sep;153(Pt A):104-110. doi: 10.1016/j.nlm.2018.04.008. Epub 2018 Apr 23. Review.

10.

Compressed Timeline of Recent Experience in Monkey Lateral Prefrontal Cortex.

Tiganj Z, Cromer JA, Roy JE, Miller EK, Howard MW.

J Cogn Neurosci. 2018 Jul;30(7):935-950. doi: 10.1162/jocn_a_01273. Epub 2018 Apr 26.

11.

Human Episodic Memory Retrieval Is Accompanied by a Neural Contiguity Effect.

Folkerts S, Rutishauser U, Howard MW.

J Neurosci. 2018 Apr 25;38(17):4200-4211. doi: 10.1523/JNEUROSCI.2312-17.2018. Epub 2018 Apr 3.

12.

Memory as Perception of the Past: Compressed Time inMind and Brain.

Howard MW.

Trends Cogn Sci. 2018 Feb;22(2):124-136. doi: 10.1016/j.tics.2017.11.004. Review.

13.

Sequential Firing Codes for Time in Rodent Medial Prefrontal Cortex.

Tiganj Z, Jung MW, Kim J, Howard MW.

Cereb Cortex. 2017 Dec 1;27(12):5663-5671. doi: 10.1093/cercor/bhw336.

14.

Neural scaling laws for an uncertain world.

Howard MW, Shankar KH.

Psychol Rev. 2018 Jan;125(1):47-58. doi: 10.1037/rev0000081. Epub 2017 Oct 16.

15.

Temporal and spatial context in the mind and brain.

Howard MW.

Curr Opin Behav Sci. 2017 Oct;17:14-19. doi: 10.1016/j.cobeha.2017.05.022.

16.

Neural Mechanism to Simulate a Scale-Invariant Future.

Shankar KH, Singh I, Howard MW.

Neural Comput. 2016 Dec;28(12):2594-2627. Epub 2016 Sep 14.

PMID:
27626961
17.

Aerobic versus Anaerobic Microbial Degradation of Clothianidin under Simulated California Rice Field Conditions.

Mulligan RA, Tomco PL, Howard MW, Schempp TT, Stewart DJ, Stacey PM, Ball DB, Tjeerdema RS.

J Agric Food Chem. 2016 Sep 28;64(38):7059-67. doi: 10.1021/acs.jafc.6b02055. Epub 2016 Sep 13.

PMID:
27499061
18.

Time Cells in Hippocampal Area CA3.

Salz DM, Tiganj Z, Khasnabish S, Kohley A, Sheehan D, Howard MW, Eichenbaum H.

J Neurosci. 2016 Jul 13;36(28):7476-84. doi: 10.1523/JNEUROSCI.0087-16.2016.

19.

Time and space in the hippocampus.

Howard MW, Eichenbaum H.

Brain Res. 2015 Sep 24;1621:345-54. doi: 10.1016/j.brainres.2014.10.069. Epub 2014 Nov 10. Review.

20.

A distributed representation of internal time.

Howard MW, Shankar KH, Aue WR, Criss AH.

Psychol Rev. 2015 Jan;122(1):24-53. doi: 10.1037/a0037840. Epub 2014 Oct 20. Review.

PMID:
25330329
21.

A simple biophysically plausible model for long time constants in single neurons.

Tiganj Z, Hasselmo ME, Howard MW.

Hippocampus. 2015 Jan;25(1):27-37. doi: 10.1002/hipo.22347. Epub 2014 Sep 25.

22.

A unified mathematical framework for coding time, space, and sequences in the hippocampal region.

Howard MW, MacDonald CJ, Tiganj Z, Shankar KH, Du Q, Hasselmo ME, Eichenbaum H.

J Neurosci. 2014 Mar 26;34(13):4692-707. doi: 10.1523/JNEUROSCI.5808-12.2014.

23.

The hippocampus, time, and memory across scales.

Howard MW, Eichenbaum H.

J Exp Psychol Gen. 2013 Nov;142(4):1211-30. doi: 10.1037/a0033621. Epub 2013 Aug 5. Review.

24.

Ventral hippocampal neurons are shaped by experience to represent behaviorally relevant contexts.

Komorowski RW, Garcia CG, Wilson A, Hattori S, Howard MW, Eichenbaum H.

J Neurosci. 2013 May 1;33(18):8079-87. doi: 10.1523/JNEUROSCI.5458-12.2013.

25.

Effects of spacing of item repetitions in continuous recognition memory: does item retrieval difficulty promote item retention in older adults?

Kılıç A, Hoyer WJ, Howard MW.

Exp Aging Res. 2013;39(3):322-41. doi: 10.1080/0361073X.2013.779200.

PMID:
23607400
26.

A causal contiguity effect that persists across time scales.

Kiliç A, Criss AH, Howard MW.

J Exp Psychol Learn Mem Cogn. 2013 Jan;39(1):297-303. doi: 10.1037/a0028463. Epub 2012 May 14.

PMID:
22582969
27.

Ensembles of human MTL neurons "jump back in time" in response to a repeated stimulus.

Howard MW, Viskontas IV, Shankar KH, Fried I.

Hippocampus. 2012 Sep;22(9):1833-47. doi: 10.1002/hipo.22018. Epub 2012 Apr 10.

28.

A scale-invariant internal representation of time.

Shankar KH, Howard MW.

Neural Comput. 2012 Jan;24(1):134-93. doi: 10.1162/NECO_a_00212. Epub 2011 Sep 15.

PMID:
21919782
29.
30.

The temporal contiguity effect predicts episodic memory performance.

Sederberg PB, Miller JF, Howard MW, Kahana MJ.

Mem Cognit. 2010 Sep;38(6):689-99. doi: 10.3758/MC.38.6.689.

PMID:
20852233
31.

Timing using temporal context.

Shankar KH, Howard MW.

Brain Res. 2010 Dec 13;1365:3-17. doi: 10.1016/j.brainres.2010.07.045. Epub 2010 Jul 21. Review.

32.

Some-or-none recollection: Evidence from item and source memory.

Onyper SV, Zhang YX, Howard MW.

J Exp Psychol Gen. 2010 May;139(2):341-64. doi: 10.1037/a0018926.

33.
34.

Bridging the gap: transitive associations between items presented in similar temporal contexts.

Howard MW, Jing B, Rao VA, Provyn JP, Datey AV.

J Exp Psychol Learn Mem Cogn. 2009 Mar;35(2):391-407. doi: 10.1037/a0015002.

PMID:
19271854
35.

Retrieved context and the discovery of semantic structure.

Rao VA, Howard MW.

Adv Neural Inf Process Syst. 2008;20:1193-1200.

36.

A context-based theory of recency and contiguity in free recall.

Sederberg PB, Howard MW, Kahana MJ.

Psychol Rev. 2008 Oct;115(4):893-912. doi: 10.1037/a0013396.

37.
38.

The persistence of memory: contiguity effects across hundreds of seconds.

Howard MW, Youker TE, Venkatadass VS.

Psychon Bull Rev. 2008 Feb;15(1):58-63.

39.

Aromatic amino acids in the juxtamembrane domain of severe acute respiratory syndrome coronavirus spike glycoprotein are important for receptor-dependent virus entry and cell-cell fusion.

Howard MW, Travanty EA, Jeffers SA, Smith MK, Wennier ST, Thackray LB, Holmes KV.

J Virol. 2008 Mar;82(6):2883-94. doi: 10.1128/JVI.01805-07. Epub 2008 Jan 16.

40.

Effects of age on contextually mediated associations in paired associate learning.

Provyn JP, Sliwinski MJ, Howard MW.

Psychol Aging. 2007 Dec;22(4):846-57. doi: 10.1037/0882-7974.22.4.846.

41.

Associative processes in immediate recency.

Howard MW, Venkatadass V, Norman KA, Kahana MJ.

Mem Cognit. 2007 Oct;35(7):1700-11.

42.

Gradual changes in hippocampal activity support remembering the order of events.

Manns JR, Howard MW, Eichenbaum H.

Neuron. 2007 Nov 8;56(3):530-40.

43.

Modeling of context-dependent retrieval in hippocampal region CA1: implications for cognitive function in schizophrenia.

Siekmeier PJ, Hasselmo ME, Howard MW, Coyle J.

Schizophr Res. 2007 Jan;89(1-3):177-90. Epub 2006 Oct 20.

PMID:
17055702
44.

Aging and contextual binding: modeling recency and lag recency effects with the temporal context model.

Howard MW, Kahana MJ, Wingfield A.

Psychon Bull Rev. 2006 Jun;13(3):439-45.

45.

Dissection of the fusion machine of SARS-coronavirus.

Howard MW, Tripet B, Jobling MG, Holmes RK, Holmes KV, Hodges RS.

Adv Exp Med Biol. 2006;581:319-22. No abstract available.

PMID:
17037552
46.

Temporal associations and prior-list intrusions in free recall.

Zaromb FM, Howard MW, Dolan ED, Sirotin YB, Tully M, Wingfield A, Kahana MJ.

J Exp Psychol Learn Mem Cogn. 2006 Jul;32(4):792-804.

PMID:
16822147
47.
48.

Shadows of the past: temporal retrieval effects in recognition memory.

Schwartz G, Howard MW, Jing B, Kahana MJ.

Psychol Sci. 2005 Nov;16(11):898-904.

49.

Place from time: Reconstructing position from a distributed representation of temporal context.

Howard MW, Natu VS.

Neural Netw. 2005 Nov;18(9):1150-62. Epub 2005 Sep 29.

50.

Spacing and lag effects in free recall of pure lists.

Kahana MJ, Howard MW.

Psychon Bull Rev. 2005 Feb;12(1):159-64.

PMID:
15948289

Supplemental Content

Loading ...
Support Center