Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 59

1.

The Effects of Krill Oil on mTOR Signaling and Resistance Exercise: A Pilot Study.

Georges J, Sharp MH, Lowery RP, Wilson JM, Purpura M, Hornberger TA, Harding F, Johnson JH, Peele DM, Jäger R.

J Nutr Metab. 2018 Apr 26;2018:7625981. doi: 10.1155/2018/7625981. eCollection 2018.

2.

A DGKζ-FoxO-ubiquitin proteolytic axis controls fiber size during skeletal muscle remodeling.

You JS, Dooley MS, Kim CR, Kim EJ, Xu W, Goodman CA, Hornberger TA.

Sci Signal. 2018 May 15;11(530). pii: eaao6847. doi: 10.1126/scisignal.aao6847.

PMID:
29764991
3.

Temporal mechanically-induced signaling events in bone and dorsal root ganglion neurons after in vivo bone loading.

Bleedorn JA, Hornberger TA, Goodman CA, Hao Z, Sample SJ, Amene E, Markel MD, Behan M, Muir P.

PLoS One. 2018 Feb 27;13(2):e0192760. doi: 10.1371/journal.pone.0192760. eCollection 2018.

4.

The Hippo Signaling Pathway in the Regulation of Skeletal Muscle Mass and Function.

Watt KI, Goodman CA, Hornberger TA, Gregorevic P.

Exerc Sport Sci Rev. 2018 Apr;46(2):92-96. doi: 10.1249/JES.0000000000000142. Review.

PMID:
29346163
5.

Identifying Novel Signaling Pathways: An Exercise Scientists Guide to Phosphoproteomics.

Wilson GM, Blanco R, Coon JJ, Hornberger TA.

Exerc Sport Sci Rev. 2018 Apr;46(2):76-85. doi: 10.1249/JES.0000000000000146. Review.

PMID:
29346157
6.

Resistance exercise initiates mechanistic target of rapamycin (mTOR) translocation and protein complex co-localisation in human skeletal muscle.

Song Z, Moore DR, Hodson N, Ward C, Dent JR, O'Leary MF, Shaw AM, Hamilton DL, Sarkar S, Gangloff YG, Hornberger TA, Spriet LL, Heigenhauser GJ, Philp A.

Sci Rep. 2017 Jul 10;7(1):5028. doi: 10.1038/s41598-017-05483-x.

7.

A map of the phosphoproteomic alterations that occur after a bout of maximal-intensity contractions.

Potts GK, McNally RM, Blanco R, You JS, Hebert AS, Westphall MS, Coon JJ, Hornberger TA.

J Physiol. 2017 Aug 1;595(15):5209-5226. doi: 10.1113/JP273904. Epub 2017 Jul 4.

8.

Identification of mechanically regulated phosphorylation sites on tuberin (TSC2) that control mechanistic target of rapamycin (mTOR) signaling.

Jacobs BL, McNally RM, Kim KJ, Blanco R, Privett RE, You JS, Hornberger TA.

J Biol Chem. 2017 Apr 28;292(17):6987-6997. doi: 10.1074/jbc.M117.777805. Epub 2017 Mar 13.

9.

Insights into the role and regulation of TCTP in skeletal muscle.

Goodman CA, Coenen AM, Frey JW, You JS, Barker RG, Frankish BP, Murphy RM, Hornberger TA.

Oncotarget. 2017 Mar 21;8(12):18754-18772. doi: 10.18632/oncotarget.13009.

10.

Commentaries on Viewpoint: The rigorous study of exercise adaptations: Why mRNA might not be enough.

Hornberger TA, Carter HN, Hood DA, Figueiredo VC, Dupont-Versteegden EE, Peterson CA, McCarthy JJ, Camera DM, Hawley JA, Chaillou T, Cheng AJ, Nader GA, Wüst RC, Houtkooper RH.

J Appl Physiol (1985). 2016 Aug 1;121(2):597-600. doi: 10.1152/japplphysiol.00509.2016. No abstract available.

11.

The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise.

Ogasawara R, Fujita S, Hornberger TA, Kitaoka Y, Makanae Y, Nakazato K, Naokata I.

Sci Rep. 2016 Aug 9;6:31142. doi: 10.1038/srep31142.

12.

Bone and skeletal muscle: Key players in mechanotransduction and potential overlapping mechanisms.

Goodman CA, Hornberger TA, Robling AG.

Bone. 2015 Nov;80:24-36. doi: 10.1016/j.bone.2015.04.014. Review.

13.

Effects of oral phosphatidic acid feeding with or without whey protein on muscle protein synthesis and anabolic signaling in rodent skeletal muscle.

Mobley CB, Hornberger TA, Fox CD, Healy JC, Ferguson BS, Lowery RP, McNally RM, Lockwood CM, Stout JR, Kavazis AN, Wilson JM, Roberts MD.

J Int Soc Sports Nutr. 2015 Aug 16;12:32. doi: 10.1186/s12970-015-0094-7. eCollection 2015.

14.

PGC-1α overexpression by in vivo transfection attenuates mitochondrial deterioration of skeletal muscle caused by immobilization.

Kang C, Goodman CA, Hornberger TA, Ji LL.

FASEB J. 2015 Oct;29(10):4092-106. doi: 10.1096/fj.14-266619. Epub 2015 Jul 15.

15.

The role of mTOR signaling in the regulation of protein synthesis and muscle mass during immobilization in mice.

You JS, Anderson GB, Dooley MS, Hornberger TA.

Dis Model Mech. 2015 Sep;8(9):1059-69. doi: 10.1242/dmm.019414. Epub 2015 Jun 18.

16.

Yes-Associated Protein is up-regulated by mechanical overload and is sufficient to induce skeletal muscle hypertrophy.

Goodman CA, Dietz JM, Jacobs BL, McNally RM, You JS, Hornberger TA.

FEBS Lett. 2015 Jun 4;589(13):1491-7. doi: 10.1016/j.febslet.2015.04.047. Epub 2015 May 8.

17.

Prioritization of skeletal muscle growth for emergence from hibernation.

Hindle AG, Otis JP, Epperson LE, Hornberger TA, Goodman CA, Carey HV, Martin SL.

J Exp Biol. 2015 Jan 15;218(Pt 2):276-84. doi: 10.1242/jeb.109512. Epub 2014 Dec 1.

18.

Skeletal muscle intermediate filaments form a stress-transmitting and stress-signaling network.

Palmisano MG, Bremner SN, Hornberger TA, Meyer GA, Domenighetti AA, Shah SB, Kiss B, Kellermayer M, Ryan AF, Lieber RL.

J Cell Sci. 2015 Jan 15;128(2):219-24. doi: 10.1242/jcs.142463. Epub 2014 Nov 20.

19.

G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy.

White JP, Wrann CD, Rao RR, Nair SK, Jedrychowski MP, You JS, Martínez-Redondo V, Gygi SP, Ruas JL, Hornberger TA, Wu Z, Glass DJ, Piao X, Spiegelman BM.

Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):15756-61. doi: 10.1073/pnas.1417898111. Epub 2014 Oct 21.

20.

Phosphatidic acid enhances mTOR signaling and resistance exercise induced hypertrophy.

Joy JM, Gundermann DM, Lowery RP, Jäger R, McCleary SA, Purpura M, Roberts MD, Wilson SM, Hornberger TA, Wilson JM.

Nutr Metab (Lond). 2014 Jun 16;11:29. doi: 10.1186/1743-7075-11-29. eCollection 2014.

21.

Lipid domain-dependent regulation of single-cell wound repair.

Vaughan EM, You JS, Elsie Yu HY, Lasek A, Vitale N, Hornberger TA, Bement WM.

Mol Biol Cell. 2014 Jun 15;25(12):1867-76. doi: 10.1091/mbc.E14-03-0839. Epub 2014 Apr 30.

22.

New roles for Smad signaling and phosphatidic acid in the regulation of skeletal muscle mass.

Goodman CA, Hornberger TA.

F1000Prime Rep. 2014 Apr 1;6:20. doi: 10.12703/P6-20. eCollection 2014. Review.

23.

The role of diacylglycerol kinase ζ and phosphatidic acid in the mechanical activation of mammalian target of rapamycin (mTOR) signaling and skeletal muscle hypertrophy.

You JS, Lincoln HC, Kim CR, Frey JW, Goodman CA, Zhong XP, Hornberger TA.

J Biol Chem. 2014 Jan 17;289(3):1551-63. doi: 10.1074/jbc.M113.531392. Epub 2013 Dec 3.

24.

A role for Raptor phosphorylation in the mechanical activation of mTOR signaling.

Frey JW, Jacobs BL, Goodman CA, Hornberger TA.

Cell Signal. 2014 Feb;26(2):313-22. doi: 10.1016/j.cellsig.2013.11.009. Epub 2013 Nov 13.

25.

The mechanical activation of mTOR signaling: an emerging role for late endosome/lysosomal targeting.

Jacobs BL, Goodman CA, Hornberger TA.

J Muscle Res Cell Motil. 2014 Feb;35(1):11-21. doi: 10.1007/s10974-013-9367-4. Epub 2013 Oct 29. Review.

26.

Smad3 induces atrogin-1, inhibits mTOR and protein synthesis, and promotes muscle atrophy in vivo.

Goodman CA, McNally RM, Hoffmann FM, Hornberger TA.

Mol Endocrinol. 2013 Nov;27(11):1946-57. doi: 10.1210/me.2013-1194. Epub 2013 Sep 3.

27.

Eccentric contractions increase the phosphorylation of tuberous sclerosis complex-2 (TSC2) and alter the targeting of TSC2 and the mechanistic target of rapamycin to the lysosome.

Jacobs BL, You JS, Frey JW, Goodman CA, Gundermann DM, Hornberger TA.

J Physiol. 2013 Sep 15;591(18):4611-20. doi: 10.1113/jphysiol.2013.256339. Epub 2013 Jun 3.

28.

Measuring protein synthesis with SUnSET: a valid alternative to traditional techniques?

Goodman CA, Hornberger TA.

Exerc Sport Sci Rev. 2013 Apr;41(2):107-15. doi: 10.1097/JES.0b013e3182798a95. Review.

29.

Mechanical stimulation induces mTOR signaling via an ERK-independent mechanism: implications for a direct activation of mTOR by phosphatidic acid.

You JS, Frey JW, Hornberger TA.

PLoS One. 2012;7(10):e47258. doi: 10.1371/journal.pone.0047258. Epub 2012 Oct 15.

30.

Muscle fiber type-dependent differences in the regulation of protein synthesis.

Goodman CA, Kotecki JA, Jacobs BL, Hornberger TA.

PLoS One. 2012;7(5):e37890. doi: 10.1371/journal.pone.0037890. Epub 2012 May 22.

31.

Imaging of protein synthesis with puromycin.

Goodman CA, Pierre P, Hornberger TA.

Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):E989; author reply E990. doi: 10.1073/pnas.1202000109. Epub 2012 Mar 23. No abstract available.

32.

The role of skeletal muscle mTOR in the regulation of mechanical load-induced growth.

Goodman CA, Frey JW, Mabrey DM, Jacobs BL, Lincoln HC, You JS, Hornberger TA.

J Physiol. 2011 Nov 15;589(Pt 22):5485-501. doi: 10.1113/jphysiol.2011.218255. Epub 2011 Sep 26.

33.

Recent progress toward understanding the molecular mechanisms that regulate skeletal muscle mass.

Goodman CA, Mayhew DL, Hornberger TA.

Cell Signal. 2011 Dec;23(12):1896-906. doi: 10.1016/j.cellsig.2011.07.013. Epub 2011 Jul 23. Review.

34.

Macrophage-specific expression of urokinase-type plasminogen activator promotes skeletal muscle regeneration.

Novak ML, Bryer SC, Cheng M, Nguyen MH, Conley KL, Cunningham AK, Xue B, Sisson TH, You JS, Hornberger TA, Koh TJ.

J Immunol. 2011 Aug 1;187(3):1448-57. doi: 10.4049/jimmunol.1004091. Epub 2011 Jun 27.

35.

Mechanotransduction and the regulation of mTORC1 signaling in skeletal muscle.

Hornberger TA.

Int J Biochem Cell Biol. 2011 Sep;43(9):1267-76. doi: 10.1016/j.biocel.2011.05.007. Epub 2011 May 19. Review.

36.

Eukaryotic initiation factor 2B epsilon induces cap-dependent translation and skeletal muscle hypertrophy.

Mayhew DL, Hornberger TA, Lincoln HC, Bamman MM.

J Physiol. 2011 Jun 15;589(Pt 12):3023-37. doi: 10.1113/jphysiol.2010.202432. Epub 2011 Apr 11.

37.

Novel insights into the regulation of skeletal muscle protein synthesis as revealed by a new nonradioactive in vivo technique.

Goodman CA, Mabrey DM, Frey JW, Miu MH, Schmidt EK, Pierre P, Hornberger TA.

FASEB J. 2011 Mar;25(3):1028-39. doi: 10.1096/fj.10-168799. Epub 2010 Dec 8.

38.

CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function.

Andrews JL, Zhang X, McCarthy JJ, McDearmon EL, Hornberger TA, Russell B, Campbell KS, Arbogast S, Reid MB, Walker JR, Hogenesch JB, Takahashi JS, Esser KA.

Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):19090-5. doi: 10.1073/pnas.1014523107. Epub 2010 Oct 18.

39.

A phosphatidylinositol 3-kinase/protein kinase B-independent activation of mammalian target of rapamycin signaling is sufficient to induce skeletal muscle hypertrophy.

Goodman CA, Miu MH, Frey JW, Mabrey DM, Lincoln HC, Ge Y, Chen J, Hornberger TA.

Mol Biol Cell. 2010 Sep 15;21(18):3258-68. doi: 10.1091/mbc.E10-05-0454. Epub 2010 Jul 28.

40.

Rapamycin impairs trabecular bone acquisition from high-dose but not low-dose intermittent parathyroid hormone treatment.

Niziolek PJ, Murthy S, Ellis SN, Sukhija KB, Hornberger TA, Turner CH, Robling AG.

J Cell Physiol. 2009 Dec;221(3):579-85. doi: 10.1002/jcp.21887.

41.

Evidence that mechanosensors with distinct biomechanical properties allow for specificity in mechanotransduction.

Frey JW, Farley EE, O'Neil TK, Burkholder TJ, Hornberger TA.

Biophys J. 2009 Jul 8;97(1):347-56. doi: 10.1016/j.bpj.2009.04.025.

42.

The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions.

O'Neil TK, Duffy LR, Frey JW, Hornberger TA.

J Physiol. 2009 Jul 15;587(Pt 14):3691-701. doi: 10.1113/jphysiol.2009.173609. Epub 2009 May 26.

43.

Late progression of renal pathology and cyst enlargement is reduced by rapamycin in a mouse model of nephronophthisis.

Gattone VH 2nd, Sinders RM, Hornberger TA, Robling AG.

Kidney Int. 2009 Jul;76(2):178-82. doi: 10.1038/ki.2009.147. Epub 2009 May 6.

44.

COX-2 inhibitor reduces skeletal muscle hypertrophy in mice.

Novak ML, Billich W, Smith SM, Sukhija KB, McLoughlin TJ, Hornberger TA, Koh TJ.

Am J Physiol Regul Integr Comp Physiol. 2009 Apr;296(4):R1132-9. doi: 10.1152/ajpregu.90874.2008. Epub 2009 Jan 28.

45.

mTOR is the rapamycin-sensitive kinase that confers mechanically-induced phosphorylation of the hydrophobic motif site Thr(389) in p70(S6k).

Hornberger TA, Sukhija KB, Wang XR, Chien S.

FEBS Lett. 2007 Oct 2;581(24):4562-6. Epub 2007 Aug 31.

46.

Urokinase-type plasminogen activator and macrophages are required for skeletal muscle hypertrophy in mice.

DiPasquale DM, Cheng M, Billich W, Huang SA, van Rooijen N, Hornberger TA, Koh TJ.

Am J Physiol Cell Physiol. 2007 Oct;293(4):C1278-85. Epub 2007 Jul 25.

47.

Regulation of mTOR by mechanically induced signaling events in skeletal muscle.

Hornberger TA, Sukhija KB, Chien S.

Cell Cycle. 2006 Jul;5(13):1391-6. Epub 2006 Jul 1. Review.

PMID:
16855395
48.

The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle.

Hornberger TA, Chu WK, Mak YW, Hsiung JW, Huang SA, Chien S.

Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4741-6. Epub 2006 Mar 14.

49.
50.

Intracellular signaling specificity in response to uniaxial vs. multiaxial stretch: implications for mechanotransduction.

Hornberger TA, Armstrong DD, Koh TJ, Burkholder TJ, Esser KA.

Am J Physiol Cell Physiol. 2005 Jan;288(1):C185-94. Epub 2004 Sep 15.

Supplemental Content

Loading ...
Support Center