Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 17

1.

Major Contribution of Somatostatin-Expressing Interneurons and Cannabinoid Receptors to Increased GABA Synaptic Activity in the Striatum of Huntington's Disease Mice.

Holley SM, Galvan L, Kamdjou T, Dong A, Levine MS, Cepeda C.

Front Synaptic Neurosci. 2019 May 14;11:14. doi: 10.3389/fnsyn.2019.00014. eCollection 2019.

2.

Peptide-modified, hyaluronic acid-based hydrogels as a 3D culture platform for neural stem/progenitor cell engineering.

Seidlits SK, Liang J, Bierman RD, Sohrabi A, Karam J, Holley SM, Cepeda C, Walthers CM.

J Biomed Mater Res A. 2019 Apr;107(4):704-718. doi: 10.1002/jbm.a.36603. Epub 2019 Jan 21.

3.

Striatal GABAergic interneuron dysfunction in the Q175 mouse model of Huntington's disease.

Holley SM, Galvan L, Kamdjou T, Cepeda C, Levine MS.

Eur J Neurosci. 2019 Jan;49(1):79-93. doi: 10.1111/ejn.14283. Epub 2018 Dec 10.

PMID:
30472747
4.

Parvalbumin Interneurons Modulate Striatal Output and Enhance Performance during Associative Learning.

Lee K, Holley SM, Shobe JL, Chong NC, Cepeda C, Levine MS, Masmanidis SC.

Neuron. 2018 Jul 11;99(1):239. doi: 10.1016/j.neuron.2018.06.034. No abstract available.

5.

Neurophysiological Assessment of Huntington's Disease Model Mice.

Donzis EJ, Holley SM, Cepeda C, Levine MS.

Methods Mol Biol. 2018;1780:163-177. doi: 10.1007/978-1-4939-7825-0_9.

PMID:
29856019
6.

Therapeutic effects of stem cells in rodent models of Huntington's disease: Review and electrophysiological findings.

Holley SM, Kamdjou T, Reidling JC, Fury B, Coleal-Bergum D, Bauer G, Thompson LM, Levine MS, Cepeda C.

CNS Neurosci Ther. 2018 Apr;24(4):329-342. doi: 10.1111/cns.12839. Epub 2018 Mar 6. Review.

7.

Human Neural Stem Cell Transplantation Rescues Functional Deficits in R6/2 and Q140 Huntington's Disease Mice.

Reidling JC, Relaño-Ginés A, Holley SM, Ochaba J, Moore C, Fury B, Lau A, Tran AH, Yeung S, Salamati D, Zhu C, Hatami A, Cepeda C, Barry JA, Kamdjou T, King A, Coleal-Bergum D, Franich NR, LaFerla FM, Steffan JS, Blurton-Jones M, Meshul CK, Bauer G, Levine MS, Chesselet MF, Thompson LM.

Stem Cell Reports. 2018 Jan 9;10(1):58-72. doi: 10.1016/j.stemcr.2017.11.005. Epub 2017 Dec 7.

8.

Basolateral Amygdala to Orbitofrontal Cortex Projections Enable Cue-Triggered Reward Expectations.

Lichtenberg NT, Pennington ZT, Holley SM, Greenfield VY, Cepeda C, Levine MS, Wassum KM.

J Neurosci. 2017 Aug 30;37(35):8374-8384. doi: 10.1523/JNEUROSCI.0486-17.2017. Epub 2017 Jul 25.

9.

Parvalbumin Interneurons Modulate Striatal Output and Enhance Performance during Associative Learning.

Lee K, Holley SM, Shobe JL, Chong NC, Cepeda C, Levine MS, Masmanidis SC.

Neuron. 2017 Mar 22;93(6):1451-1463.e4. doi: 10.1016/j.neuron.2017.02.033. Erratum in: Neuron. 2018 Jul 11;99(1):239.

10.

Enhanced GABAergic Inputs Contribute to Functional Alterations of Cholinergic Interneurons in the R6/2 Mouse Model of Huntington's Disease.

Holley SM, Joshi PR, Parievsky A, Galvan L, Chen JY, Fisher YE, Huynh MN, Cepeda C, Levine MS.

eNeuro. 2015 Jan-Feb;2(1). pii: e0008.

11.

Forebrain deletion of the dystonia protein torsinA causes dystonic-like movements and loss of striatal cholinergic neurons.

Pappas SS, Darr K, Holley SM, Cepeda C, Mabrouk OS, Wong JM, LeWitt TM, Paudel R, Houlden H, Kennedy RT, Levine MS, Dauer WT.

Elife. 2015 Jun 8;4:e08352. doi: 10.7554/eLife.08352.

12.

Neuronal targets for reducing mutant huntingtin expression to ameliorate disease in a mouse model of Huntington's disease.

Wang N, Gray M, Lu XH, Cantle JP, Holley SM, Greiner E, Gu X, Shirasaki D, Cepeda C, Li Y, Dong H, Levine MS, Yang XW.

Nat Med. 2014 May;20(5):536-41. doi: 10.1038/nm.3514. Epub 2014 Apr 28.

13.

Multiple sources of striatal inhibition are differentially affected in Huntington's disease mouse models.

Cepeda C, Galvan L, Holley SM, Rao SP, André VM, Botelho EP, Chen JY, Watson JB, Deisseroth K, Levine MS.

J Neurosci. 2013 Apr 24;33(17):7393-406. doi: 10.1523/JNEUROSCI.2137-12.2013.

14.

Frontal cortical synaptic communication is abnormal in Disc1 genetic mouse models of schizophrenia.

Holley SM, Wang EA, Cepeda C, Jentsch JD, Ross CA, Pletnikov MV, Levine MS.

Schizophr Res. 2013 May;146(1-3):264-72. doi: 10.1016/j.schres.2013.02.007. Epub 2013 Mar 6.

15.

White matter loss in a mouse model of periventricular leukomalacia is rescued by trophic factors.

Espinosa-Jeffrey A, Barajas SA, Arrazola AR, Taniguchi A, Zhao PM, Bokhoor P, Holley SM, Dejarme DP, Chu B, Cepeda C, Levine MS, Gressens P, Feria-Velasco A, de Vellis J.

Brain Sci. 2013 Nov 12;3(4):1461-82. doi: 10.3390/brainsci3041461.

16.

The loss of an electrostatic contact unique to AMPA receptor ligand binding domain 2 slows channel activation.

Holley SM, Ahmed AH, Srinivasan J, Murthy SE, Weiland GA, Oswald RE, Nowak LM.

Biochemistry. 2012 May 15;51(19):4015-27. doi: 10.1021/bi3001837. Epub 2012 May 2.

17.

Genetic mouse models of Huntington's disease: focus on electrophysiological mechanisms.

Cepeda C, Cummings DM, André VM, Holley SM, Levine MS.

ASN Neuro. 2010 Apr 7;2(2):e00033. doi: 10.1042/AN20090058. Review.

Supplemental Content

Loading ...
Support Center