Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 24

1.

[Na+] Increases in Body Fluids Sensed by Central Nax Induce Sympathetically Mediated Blood Pressure Elevations via H+-Dependent Activation of ASIC1a.

Nomura K, Hiyama TY, Sakuta H, Matsuda T, Lin CH, Kobayashi K, Kobayashi K, Kuwaki T, Takahashi K, Matsui S, Noda M.

Neuron. 2019 Jan 2;101(1):60-75.e6. doi: 10.1016/j.neuron.2018.11.017. Epub 2018 Nov 29.

PMID:
30503172
2.

Characteristic clinical features of adipsic hypernatremia patients with subfornical organ-targeting antibody.

Nakamura-Utsunomiya A, Hiyama TY, Okada S, Noda M, Kobayashi M.

Clin Pediatr Endocrinol. 2017;26(4):197-205. doi: 10.1297/cpe.26.197. Epub 2017 Sep 28.

3.

Erratum: Distinct neural mechanisms for the control of thirst and salt appetite in the subfornical organ.

Matsuda T, Hiyama TY, Niimura F, Matsusaka T, Fukamizu A, Kobayashi K, Kobayashi K, Noda M.

Nat Neurosci. 2017 May 25;20(6):896. doi: 10.1038/nn0617-896b. No abstract available.

PMID:
28542153
4.

Distinct neural mechanisms for the control of thirst and salt appetite in the subfornical organ.

Matsuda T, Hiyama TY, Niimura F, Matsusaka T, Fukamizu A, Kobayashi K, Kobayashi K, Noda M.

Nat Neurosci. 2017 Feb;20(2):230-241. doi: 10.1038/nn.4463. Epub 2016 Dec 19. Erratum in: Nat Neurosci. 2017 May 25;20(6):896.

PMID:
27991901
5.

Sodium sensing in the subfornical organ and body-fluid homeostasis.

Hiyama TY, Noda M.

Neurosci Res. 2016 Dec;113:1-11. doi: 10.1016/j.neures.2016.07.007. Epub 2016 Aug 10. Review.

PMID:
27521454
6.

Detection of LacZ-Positive Cells in Living Tissue with Single-Cell Resolution.

Doura T, Kamiya M, Obata F, Yamaguchi Y, Hiyama TY, Matsuda T, Fukamizu A, Noda M, Miura M, Urano Y.

Angew Chem Int Ed Engl. 2016 Aug 8;55(33):9620-4. doi: 10.1002/anie.201603328. Epub 2016 Jul 12.

PMID:
27400827
7.

Adipsic hypernatremia without hypothalamic lesions accompanied by autoantibodies to subfornical organ.

Hiyama TY, Utsunomiya AN, Matsumoto M, Fujikawa A, Lin CH, Hara K, Kagawa R, Okada S, Kobayashi M, Ishikawa M, Anzo M, Cho H, Takayasu S, Nigawara T, Daimon M, Sato T, Terui K, Ito E, Noda M.

Brain Pathol. 2017 May;27(3):323-331. doi: 10.1111/bpa.12409. Epub 2016 Aug 2.

PMID:
27338632
8.

Nax signaling evoked by an increase in [Na+] in CSF induces water intake via EET-mediated TRPV4 activation.

Sakuta H, Nishihara E, Hiyama TY, Lin CH, Noda M.

Am J Physiol Regul Integr Comp Physiol. 2016 Aug 1;311(2):R299-306. doi: 10.1152/ajpregu.00352.2015. Epub 2016 Jun 1.

9.

Channel properties of Nax expressed in neurons.

Matsumoto M, Hiyama TY, Kuboyama K, Suzuki R, Fujikawa A, Noda M.

PLoS One. 2015 May 11;10(5):e0126109. doi: 10.1371/journal.pone.0126109. eCollection 2015. Erratum in: PLoS One. 2015;10(6):e0130107.

10.

Sodium sensing in the brain.

Noda M, Hiyama TY.

Pflugers Arch. 2015 Mar;467(3):465-74. doi: 10.1007/s00424-014-1662-4. Epub 2014 Dec 10. Review.

11.

The Na(x) Channel: What It Is and What It Does.

Noda M, Hiyama TY.

Neuroscientist. 2015 Aug;21(4):399-412. doi: 10.1177/1073858414541009. Epub 2014 Jun 24. Review.

PMID:
24962095
12.

Involvement of Nax sodium channel in peripheral nerve regeneration via lactate signaling.

Unezaki S, Katano T, Hiyama TY, Tu NH, Yoshii S, Noda M, Ito S.

Eur J Neurosci. 2014 Mar;39(5):720-9. Epub 2013 Nov 29.

PMID:
24730033
13.

Endothelin-3 expression in the subfornical organ enhances the sensitivity of Na(x), the brain sodium-level sensor, to suppress salt intake.

Hiyama TY, Yoshida M, Matsumoto M, Suzuki R, Matsuda T, Watanabe E, Noda M.

Cell Metab. 2013 Apr 2;17(4):507-19.

14.

SAP97 promotes the stability of Nax channels at the plasma membrane.

Matsumoto M, Fujikawa A, Suzuki R, Shimizu H, Kuboyama K, Hiyama TY, Hall RA, Noda M.

FEBS Lett. 2012 Nov 2;586(21):3805-12. doi: 10.1016/j.febslet.2012.09.018. Epub 2012 Sep 25.

15.

Osmosensitivity of transient receptor potential vanilloid 1 is synergistically enhanced by distinct activating stimuli such as temperature and protons.

Nishihara E, Hiyama TY, Noda M.

PLoS One. 2011;6(7):e22246. doi: 10.1371/journal.pone.0022246. Epub 2011 Jul 14.

16.

Autoimmunity to the sodium-level sensor in the brain causes essential hypernatremia.

Hiyama TY, Matsuda S, Fujikawa A, Matsumoto M, Watanabe E, Kajiwara H, Niimura F, Noda M.

Neuron. 2010 May 27;66(4):508-22. doi: 10.1016/j.neuron.2010.04.017.

17.

Na(x)-deficient mice show normal vasopressin response to dehydration.

Nagakura A, Hiyama TY, Noda M.

Neurosci Lett. 2010 Mar 26;472(3):161-5. doi: 10.1016/j.neulet.2010.01.077. Epub 2010 Feb 4.

PMID:
20138121
18.

Glial Nax channels control lactate signaling to neurons for brain [Na+] sensing.

Shimizu H, Watanabe E, Hiyama TY, Nagakura A, Fujikawa A, Okado H, Yanagawa Y, Obata K, Noda M.

Neuron. 2007 Apr 5;54(1):59-72.

19.

Sodium-level-sensitive sodium channel Na(x) is expressed in glial laminate processes in the sensory circumventricular organs.

Watanabe E, Hiyama TY, Shimizu H, Kodama R, Hayashi N, Miyata S, Yanagawa Y, Obata K, Noda M.

Am J Physiol Regul Integr Comp Physiol. 2006 Mar;290(3):R568-76. Epub 2005 Oct 13.

20.

Sodium-level-sensitive sodium channel and salt-intake behavior.

Noda M, Hiyama TY.

Chem Senses. 2005 Jan;30 Suppl 1:i44-5. No abstract available.

PMID:
15738187
21.
22.

Re-expression of NR2B-containing NMDA receptors in vitro by suppression of neuronal activity.

Kiyosue K, Hiyama TY, Nakayama K, Kasai M, Taguchi T.

Int J Dev Neurosci. 2004 Apr;22(2):59-65.

PMID:
15036380
23.

NaX sodium channel is expressed in non-myelinating Schwann cells and alveolar type II cells in mice.

Watanabe E, Hiyama TY, Kodama R, Noda M.

Neurosci Lett. 2002 Sep 13;330(1):109-13.

PMID:
12213645
24.

Na(x) channel involved in CNS sodium-level sensing.

Hiyama TY, Watanabe E, Ono K, Inenaga K, Tamkun MM, Yoshida S, Noda M.

Nat Neurosci. 2002 Jun;5(6):511-2. No abstract available.

PMID:
11992118

Supplemental Content

Loading ...
Support Center