Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 34

1.

Auditory-induced visual illusions in rodents measured by spontaneous behavioural response.

Ito Y, Sato R, Tamai Y, Hiryu S, Uekita T, Kobayasi KI.

Sci Rep. 2019 Dec 16;9(1):19211. doi: 10.1038/s41598-019-55664-z.

2.

Three forebrain structures directly inform the auditory midbrain of echolocating bats.

Ito T, Yamamoto R, Furuyama T, Hase K, Kobayasi KI, Hiryu S, Honma S.

Neurosci Lett. 2019 Nov 1;712:134481. doi: 10.1016/j.neulet.2019.134481. Epub 2019 Sep 5.

PMID:
31494222
3.

STEFTR: A Hybrid Versatile Method for State Estimation and Feature Extraction From the Trajectory of Animal Behavior.

Yamazaki SJ, Ohara K, Ito K, Kokubun N, Kitanishi T, Takaichi D, Yamada Y, Ikejiri Y, Hiramatsu F, Fujita K, Tanimoto Y, Yamazoe-Umemoto A, Hashimoto K, Sato K, Yoda K, Takahashi A, Ishikawa Y, Kamikouchi A, Hiryu S, Maekawa T, Kimura KD.

Front Neurosci. 2019 Jun 28;13:626. doi: 10.3389/fnins.2019.00626. eCollection 2019.

4.

Bat-inspired signal design for target discrimination in human echolocation.

Sumiya M, Ashihara K, Yoshino K, Gogami M, Nagatani Y, Kobayasi KI, Watanabe Y, Hiryu S.

J Acoust Soc Am. 2019 Apr;145(4):2221. doi: 10.1121/1.5097166.

PMID:
31046316
5.

Biosonar interpulse intervals and pulse-echo ambiguity in four species of echolocating bats.

Simmons JA, Hiryu S, Shriram U.

J Exp Biol. 2019 Apr 15;222(Pt 8). pii: jeb195446. doi: 10.1242/jeb.195446.

6.

Hearing sensitivity evaluated by the auditory brainstem response in Miniopterus fuliginosus.

Furuyama T, Hase K, Hiryu S, Kobayasi KI.

J Acoust Soc Am. 2018 Nov;144(5):EL436. doi: 10.1121/1.5079904.

PMID:
30522325
7.

Adaptive frequency shifts of echolocation sounds in Miniopterus fuliginosus according to the frequency-modulated pattern of jamming sounds.

Maitani Y, Hase K, Kobayasi KI, Hiryu S.

J Exp Biol. 2018 Oct 15. pii: jeb.188565. doi: 10.1242/jeb.188565. [Epub ahead of print]

PMID:
30322982
8.

Bats enhance their call identities to solve the cocktail party problem.

Hase K, Kadoya Y, Maitani Y, Miyamoto T, Kobayasi KI, Hiryu S.

Commun Biol. 2018 May 3;1:39. doi: 10.1038/s42003-018-0045-3. eCollection 2018.

9.

Organization of subcortical auditory nuclei of Japanese house bat (Pipistrellus abramus) identified with cytoarchitecture and molecular expression.

Ito T, Furuyama T, Hase K, Kobayasi KI, Hiryu S, Riquimaroux H.

J Comp Neurol. 2018 Dec 1;526(17):2824-2844. doi: 10.1002/cne.24529. Epub 2018 Oct 23.

PMID:
30168138
10.

Organization of projection from brainstem auditory nuclei to the inferior colliculus of Japanese house bat (Pipistrellus abramus).

Ito T, Furuyama T, Hase K, Kobayasi KI, Hiryu S.

Brain Behav. 2018 Aug;8(8):e01059. doi: 10.1002/brb3.1059. Epub 2018 Jul 12.

11.

Three-dimensional sonar beam-width expansion by Japanese house bats (Pipistrellus abramus) during natural foraging.

Motoi K, Sumiya M, Fujioka E, Hiryu S.

J Acoust Soc Am. 2017 May;141(5):EL439. doi: 10.1121/1.4981934.

PMID:
28599524
12.

Coordinated Control of Acoustical Field of View and Flight in Three-Dimensional Space for Consecutive Capture by Echolocating Bats during Natural Foraging.

Sumiya M, Fujioka E, Motoi K, Kondo M, Hiryu S.

PLoS One. 2017 Jan 13;12(1):e0169995. doi: 10.1371/journal.pone.0169995. eCollection 2017.

13.

Species-specific control of acoustic gaze by echolocating bats, Rhinolophus ferrumequinum nippon and Pipistrellus abramus, during flight.

Yamada Y, Hiryu S, Watanabe Y.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2016 Nov;202(11):791-801. Epub 2016 Aug 26.

14.

Rapid frequency control of sonar sounds by the FM bat, Miniopterus fuliginosus, in response to spectral overlap.

Hase K, Miyamoto T, Kobayasi KI, Hiryu S.

Behav Processes. 2016 Jul;128:126-33. doi: 10.1016/j.beproc.2016.04.017. Epub 2016 May 6.

15.

Echolocating bats use future-target information for optimal foraging.

Fujioka E, Aihara I, Sumiya M, Aihara K, Hiryu S.

Proc Natl Acad Sci U S A. 2016 Apr 26;113(17):4848-52. doi: 10.1073/pnas.1515091113. Epub 2016 Apr 11.

16.

Rapid shifts of sonar attention by Pipistrellus abramus during natural hunting for multiple prey.

Fujioka E, Aihara I, Watanabe S, Sumiya M, Hiryu S, Simmons JA, Riquimaroux H, Watanabe Y.

J Acoust Soc Am. 2014 Dec;136(6):3389. doi: 10.1121/1.4898428.

PMID:
25480083
17.

Ultrasound radiation from a three-layer thermoacoustic transformation device.

Nishioka T, Teshima Y, Mano T, Sakai K, Asada T, Matsukawa M, Ohta T, Hiryu S.

Ultrasonics. 2015 Mar;57:84-9. doi: 10.1016/j.ultras.2014.10.019. Epub 2014 Nov 10.

PMID:
25465964
18.

Adaptive changes in echolocation sounds by Pipistrellus abramus in response to artificial jamming sounds.

Takahashi E, Hyomoto K, Riquimaroux H, Watanabe Y, Ohta T, Hiryu S.

J Exp Biol. 2014 Aug 15;217(Pt 16):2885-91. doi: 10.1242/jeb.101139.

19.

Prey pursuit strategy of Japanese horseshoe bats during an in-flight target-selection task.

Kinoshita Y, Ogata D, Watanabe Y, Riquimaroux H, Ohta T, Hiryu S.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2014 Sep;200(9):799-809. doi: 10.1007/s00359-014-0921-3. Epub 2014 Jun 24.

PMID:
24958227
20.

Qualitative and quantitative analyses of the echolocation strategies of bats on the basis of mathematical modelling and laboratory experiments.

Aihara I, Fujioka E, Hiryu S.

PLoS One. 2013 Jul 5;8(7):e68635. doi: 10.1371/journal.pone.0068635. Print 2013.

21.

Adaptive beam-width control of echolocation sounds by CF-FM bats, Rhinolophus ferrumequinum nippon, during prey-capture flight.

Matsuta N, Hiryu S, Fujioka E, Yamada Y, Riquimaroux H, Watanabe Y.

J Exp Biol. 2013 Apr 1;216(Pt 7):1210-8. doi: 10.1242/jeb.081398.

22.

Vocalization of echolocation-like pulses for interindividual interaction in horseshoe bats (Rhinolophus ferrumequinum).

Kobayasi KI, Hiryu S, Shimozawa R, Riquimaroux H.

J Acoust Soc Am. 2012 Nov;132(5):EL417-22. doi: 10.1121/1.4757695.

PMID:
23145704
23.

Echolocation behavior of the Japanese horseshoe bat in pursuit of fluttering prey.

Mantani S, Hiryu S, Fujioka E, Matsuta N, Riquimaroux H, Watanabe Y.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2012 Oct;198(10):741-51. Epub 2012 Jul 10.

PMID:
22777677
24.

Convergence of reference frequencies by multiple CF-FM bats (Rhinolophus ferrumequinum nippon) during paired flights evaluated with onboard microphones.

Furusawa Y, Hiryu S, Kobayasi KI, Riquimaroux H.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2012 Sep;198(9):683-93. doi: 10.1007/s00359-012-0739-9. Epub 2012 Jun 21.

PMID:
22717760
25.

Developmental changes in ultrasonic vocalizations by infant Japanese echolocating bats, Pipistrellus abramus.

Hiryu S, Riquimaroux H.

J Acoust Soc Am. 2011 Oct;130(4):EL147-53. doi: 10.1121/1.3632044.

PMID:
21974484
26.

Echolocation and flight strategy of Japanese house bats during natural foraging, revealed by a microphone array system.

Fujioka E, Mantani S, Hiryu S, Riquimaroux H, Watanabe Y.

J Acoust Soc Am. 2011 Feb;129(2):1081-8. doi: 10.1121/1.3523300.

PMID:
21361464
27.

Frequency tuning and latency organization of responses in the inferior colliculus of Japanese house bat, Pipistrellus abramus.

Goto K, Hiryu S, Riquimaroux H.

J Acoust Soc Am. 2010 Sep;128(3):1452-9. doi: 10.1121/1.3419904.

PMID:
20815479
28.

FM echolocating bats shift frequencies to avoid broadcast-echo ambiguity in clutter.

Hiryu S, Bates ME, Simmons JA, Riquimaroux H.

Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):7048-53. doi: 10.1073/pnas.1000429107. Epub 2010 Mar 29.

29.

Pulse-echo interaction in free-flying horseshoe bats, Rhinolophus ferrumequinum nippon.

Shiori Y, Hiryu S, Watanabe Y, Riquimaroux H, Watanabe Y.

J Acoust Soc Am. 2009 Sep;126(3):EL80-5. doi: 10.1121/1.3186798.

PMID:
19739702
30.

Adaptive echolocation sounds of insectivorous bats, Pipistrellus abramus, during foraging flights in the field.

Hiryu S, Hagino T, Fujioka E, Riquimaroux H, Watanabe Y.

J Acoust Soc Am. 2008 Aug;124(2):EL51-6. doi: 10.1121/1.2947629.

PMID:
18681502
31.

On-board telemetry of emitted sounds from free-flying bats: compensation for velocity and distance stabilizes echo frequency and amplitude.

Hiryu S, Shiori Y, Hosokawa T, Riquimaroux H, Watanabe Y.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Sep;194(9):841-51. doi: 10.1007/s00359-008-0355-x. Epub 2008 Jul 29.

PMID:
18663454
32.

Echo-intensity compensation in echolocating bats (Pipistrellus abramus) during flight measured by a telemetry microphone.

Hiryu S, Hagino T, Riquimaroux H, Watanabe Y.

J Acoust Soc Am. 2007 Mar;121(3):1749-57.

PMID:
17407911
33.

Intra-individual variation in the vocalized frequency of the Taiwanese leaf-nosed bat, Hipposideros terasensis, influenced by conspecific colony members.

Hiryu S, Katsura K, Nagato T, Yamazaki H, Lin LK, Watanabe Y, Riquimaroux H.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006 Aug;192(8):807-15. Epub 2006 Mar 15.

PMID:
16538514
34.

Doppler-shift compensation in the Taiwanese leaf-nosed bat (Hipposideros terasensis) recorded with a telemetry microphone system during flight.

Hiryu S, Katsura K, Lin LK, Riquimaroux H, Watanabe Y.

J Acoust Soc Am. 2005 Dec;118(6):3927-33.

PMID:
16419835

Supplemental Content

Support Center