Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 27

1.

Development of a supF-based mutation-detection system in the extreme thermophile Thermus thermophilus HB27.

Togawa Y, Shiotani S, Kato Y, Ezaki K, Nunoshiba T, Hiratsu K.

Mol Genet Genomics. 2019 Aug;294(4):1085-1093. doi: 10.1007/s00438-019-01565-9. Epub 2019 Apr 9.

PMID:
30968247
2.

The NAC Transcription Factor Gene OsY37 (ONAC011) Promotes Leaf Senescence and Accelerates Heading Time in Rice.

El Mannai Y, Akabane K, Hiratsu K, Satoh-Nagasawa N, Wabiko H.

Int J Mol Sci. 2017 Oct 17;18(10). pii: E2165. doi: 10.3390/ijms18102165.

3.

Cre/lox-based multiple markerless gene disruption in the genome of the extreme thermophile Thermus thermophilus.

Togawa Y, Nunoshiba T, Hiratsu K.

Mol Genet Genomics. 2018 Feb;293(1):277-291. doi: 10.1007/s00438-017-1361-x. Epub 2017 Aug 24.

PMID:
28840320
4.

Induction of a dwarf phenotype with IBH1 may enable increased production of plant-made pharmaceuticals in plant factory conditions.

Nagatoshi Y, Ikeda M, Kishi H, Hiratsu K, Muraguchi A, Ohme-Takagi M.

Plant Biotechnol J. 2016 Mar;14(3):887-94. doi: 10.1111/pbi.12437. Epub 2015 Jul 20.

5.

Construction of a supF-based system for detection of mutations in the chromosomal DNA of Arabidopsis.

Hiratsu K, Shiotani S, Makino K, Nunoshiba T.

Mol Genet Genomics. 2013 Dec;288(12):707-15. doi: 10.1007/s00438-013-0783-3. Epub 2013 Oct 24.

PMID:
24154629
6.

Aberrant vegetative and reproductive development by overexpression and lethality by silencing of OsHAP3E in rice.

Ito Y, Thirumurugan T, Serizawa A, Hiratsu K, Ohme-Takagi M, Kurata N.

Plant Sci. 2011 Aug;181(2):105-10. doi: 10.1016/j.plantsci.2011.04.009. Epub 2011 Apr 28.

PMID:
21683874
7.

The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis.

Iwase A, Mitsuda N, Koyama T, Hiratsu K, Kojima M, Arai T, Inoue Y, Seki M, Sakakibara H, Sugimoto K, Ohme-Takagi M.

Curr Biol. 2011 Mar 22;21(6):508-14. doi: 10.1016/j.cub.2011.02.020.

8.

Loss of function of the HSFA9 seed longevity program.

Tejedor-Cano J, Prieto-Dapena P, Almoguera C, Carranco R, Hiratsu K, Ohme-Takagi M, Jordano J.

Plant Cell Environ. 2010 Aug 1;33(8):1408-17. doi: 10.1111/j.1365-3040.2010.02159.x. Epub 2010 Apr 22.

9.

The Arabidopsis thaliana STYLISH1 protein acts as a transcriptional activator regulating auxin biosynthesis.

Eklund DM, Ståldal V, Valsecchi I, Cierlik I, Eriksson C, Hiratsu K, Ohme-Takagi M, Sundström JF, Thelander M, Ezcurra I, Sundberg E.

Plant Cell. 2010 Feb;22(2):349-63. doi: 10.1105/tpc.108.064816. Epub 2010 Feb 12.

10.

Efficient production of male and female sterile plants by expression of a chimeric repressor in Arabidopsis and rice.

Mitsuda N, Hiratsu K, Todaka D, Nakashima K, Yamaguchi-Shinozaki K, Ohme-Takagi M.

Plant Biotechnol J. 2006 May;4(3):325-32.

11.

AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis.

Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K.

Plant Cell. 2005 Dec;17(12):3470-88. Epub 2005 Nov 11.

12.

A chimeric AtMYB23 repressor induces hairy roots, elongation of leaves and stems, and inhibition of the deposition of mucilage on seed coats in Arabidopsis.

Matsui K, Hiratsu K, Koyama T, Tanaka H, Ohme-Takagi M.

Plant Cell Physiol. 2005 Jan;46(1):147-55. Epub 2005 Jan 24.

PMID:
15668208
13.

Identification of the minimal repression domain of SUPERMAN shows that the DLELRL hexapeptide is both necessary and sufficient for repression of transcription in Arabidopsis.

Hiratsu K, Mitsuda N, Matsui K, Ohme-Takagi M.

Biochem Biophys Res Commun. 2004 Aug 13;321(1):172-8. Erratum in: Biochem Biophys Res Commun. 2006 Aug 25;347(2):540.

PMID:
15358231
14.

A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway.

Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LS, Yamaguchi-Shinozaki K, Shinozaki K.

Plant J. 2004 Sep;39(6):863-76.

15.

Circularized chromosome with a large palindromic structure in Streptomyces griseus mutants.

Uchida T, Ishihara N, Zenitani H, Hiratsu K, Kinashi H.

J Bacteriol. 2004 Jun;186(11):3313-20.

16.

Chromosomal circularization in Streptomyces griseus by nonhomologous recombination of deletion ends.

Inoue S, Higashiyama K, Uchida T, Hiratsu K, Kinashi H.

Biosci Biotechnol Biochem. 2003 May;67(5):1101-8.

17.

The large linear plasmid pSLA2-L of Streptomyces rochei has an unusually condensed gene organization for secondary metabolism.

Mochizuki S, Hiratsu K, Suwa M, Ishii T, Sugino F, Yamada K, Kinashi H.

Mol Microbiol. 2003 Jun;48(6):1501-10.

18.
19.

Cloning and analysis of the telomere and terminal inverted repeat of the linear chromosome of Streptomyces griseus.

Goshi K, Uchida T, Lezhava A, Yamasaki M, Hiratsu K, Shinkawa H, Kinashi H.

J Bacteriol. 2002 Jun;184(12):3411-5.

20.
21.

Repression domains of class II ERF transcriptional repressors share an essential motif for active repression.

Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M.

Plant Cell. 2001 Aug;13(8):1959-68.

22.
23.

Analysis of fusion junctions of circularized chromosomes in Streptomyces griseus.

Kameoka D, Lezhava A, Zenitani H, Hiratsu K, Kawamoto M, Goshi K, Inada K, Shinkawa H, Kinashi H.

J Bacteriol. 1999 Sep;181(18):5711-7.

24.

Molecular cloning and functional analysis of an rpoS homologue gene from Vibrio cholerae N86.

Hiratsu K, Yamamoto K, Makino K.

Genes Genet Syst. 1997 Apr;72(2):115-8.

26.
27.

The rpoE gene of Escherichia coli, which encodes sigma E, is essential for bacterial growth at high temperature.

Hiratsu K, Amemura M, Nashimoto H, Shinagawa H, Makino K.

J Bacteriol. 1995 May;177(10):2918-22.

Supplemental Content

Loading ...
Support Center