Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 26

1.

β-N-Acetylglucosaminidase MthNAG from Myceliophthora thermophila C1, a thermostable enzyme for production of N-acetylglucosamine from chitin.

Krolicka M, Hinz SWA, Koetsier MJ, Eggink G, van den Broek LAM, Boeriu CG.

Appl Microbiol Biotechnol. 2018 Sep;102(17):7441-7454. doi: 10.1007/s00253-018-9166-3. Epub 2018 Jun 25.

2.

Chitinase Chi1 from Myceliophthora thermophila C1, a Thermostable Enzyme for Chitin and Chitosan Depolymerization.

Krolicka M, Hinz SWA, Koetsier MJ, Joosten R, Eggink G, van den Broek LAM, Boeriu CG.

J Agric Food Chem. 2018 Feb 21;66(7):1658-1669. doi: 10.1021/acs.jafc.7b04032. Epub 2018 Feb 7.

3.

Quantification of the catalytic performance of C1-cellulose-specific lytic polysaccharide monooxygenases.

Frommhagen M, Westphal AH, Hilgers R, Koetsier MJ, Hinz SWA, Visser J, Gruppen H, van Berkel WJH, Kabel MA.

Appl Microbiol Biotechnol. 2018 Feb;102(3):1281-1295. doi: 10.1007/s00253-017-8541-9. Epub 2017 Dec 2.

4.

Boosting LPMO-driven lignocellulose degradation by polyphenol oxidase-activated lignin building blocks.

Frommhagen M, Mutte SK, Westphal AH, Koetsier MJ, Hinz SWA, Visser J, Vincken JP, Weijers D, van Berkel WJH, Gruppen H, Kabel MA.

Biotechnol Biofuels. 2017 May 10;10:121. doi: 10.1186/s13068-017-0810-4. eCollection 2017.

5.

Lytic polysaccharide monooxygenases from Myceliophthora thermophila C1 differ in substrate preference and reducing agent specificity.

Frommhagen M, Koetsier MJ, Westphal AH, Visser J, Hinz SW, Vincken JP, van Berkel WJ, Kabel MA, Gruppen H.

Biotechnol Biofuels. 2016 Aug 31;9(1):186. doi: 10.1186/s13068-016-0594-y. eCollection 2016.

6.

Discovery of the combined oxidative cleavage of plant xylan and cellulose by a new fungal polysaccharide monooxygenase.

Frommhagen M, Sforza S, Westphal AH, Visser J, Hinz SW, Koetsier MJ, van Berkel WJ, Gruppen H, Kabel MA.

Biotechnol Biofuels. 2015 Jul 17;8:101. doi: 10.1186/s13068-015-0284-1. eCollection 2015.

7.

Characterization of an acetyl esterase from Myceliophthora thermophila C1 able to deacetylate xanthan.

Kool MM, Schols HA, Wagenknecht M, Hinz SW, Moerschbacher BM, Gruppen H.

Carbohydr Polym. 2014 Oct 13;111:222-9. doi: 10.1016/j.carbpol.2014.04.064. Epub 2014 Apr 26.

PMID:
25037346
8.

Distinct roles of carbohydrate esterase family CE16 acetyl esterases and polymer-acting acetyl xylan esterases in xylan deacetylation.

Koutaniemi S, van Gool MP, Juvonen M, Jokela J, Hinz SW, Schols HA, Tenkanen M.

J Biotechnol. 2013 Dec;168(4):684-92. doi: 10.1016/j.jbiotec.2013.10.009. Epub 2013 Oct 18.

PMID:
24140638
9.

Two novel GH11 endo-xylanases from Myceliophthora thermophila C1 act differently toward soluble and insoluble xylans.

van Gool MP, van Muiswinkel GC, Hinz SW, Schols HA, Sinitsyn AP, Gruppen H.

Enzyme Microb Technol. 2013 Jun 10;53(1):25-32. doi: 10.1016/j.enzmictec.2013.03.019. Epub 2013 Apr 2.

PMID:
23683701
10.

Efficient plant biomass degradation by thermophilic fungus Myceliophthora heterothallica.

van den Brink J, van Muiswinkel GC, Theelen B, Hinz SW, de Vries RP.

Appl Environ Microbiol. 2013 Feb;79(4):1316-24. doi: 10.1128/AEM.02865-12. Epub 2012 Dec 14.

11.

Cloning, purification, and characterization of galactomannan-degrading enzymes from Myceliophthora thermophila.

Dotsenko GS, Semenova MV, Sinitsyna OA, Hinz SW, Wery J, Zorov IN, Kondratieva EG, Sinitsyn AP.

Biochemistry (Mosc). 2012 Nov;77(11):1303-11. doi: 10.1134/S0006297912110090.

PMID:
23240568
12.

Two GH10 endo-xylanases from Myceliophthora thermophila C1 with and without cellulose binding module act differently towards soluble and insoluble xylans.

van Gool MP, van Muiswinkel GC, Hinz SW, Schols HA, Sinitsyn AP, Gruppen H.

Bioresour Technol. 2012 Sep;119:123-32. doi: 10.1016/j.biortech.2012.05.117. Epub 2012 May 29.

PMID:
22728192
13.

Structural features of β-(1→4)-D-galactomannans of plant origin as a probe for β-(1→4)-mannanase polymeric substrate specificity.

Klyosov AA, Dotsenko GS, Hinz SW, Sinitsyn AP.

Carbohydr Res. 2012 May 1;352:65-9. doi: 10.1016/j.carres.2012.02.030. Epub 2012 Mar 6.

PMID:
22436888
14.

Characterization of a GH family 3 β-glycoside hydrolase from Chrysosporium lucknowense and its application to the hydrolysis of β-glucan and xylan.

Dotsenko GS, Sinitsyna OA, Hinz SW, Wery J, Sinitsyn AP.

Bioresour Technol. 2012 May;112:345-9. doi: 10.1016/j.biortech.2012.02.105. Epub 2012 Mar 3.

PMID:
22429400
15.

The ferulic acid esterases of Chrysosporium lucknowense C1: purification, characterization and their potential application in biorefinery.

Kühnel S, Pouvreau L, Appeldoorn MM, Hinz SW, Schols HA, Gruppen H.

Enzyme Microb Technol. 2012 Jan 5;50(1):77-85. doi: 10.1016/j.enzmictec.2011.09.008. Epub 2011 Sep 29.

PMID:
22133444
16.

Chrysosporium lucknowense C1 arabinofuranosidases are selective in releasing arabinose from either single or double substituted xylose residues in arabinoxylans.

Pouvreau L, Joosten R, Hinz SW, Gruppen H, Schols HA.

Enzyme Microb Technol. 2011 Apr 7;48(4-5):397-403. doi: 10.1016/j.enzmictec.2011.01.004. Epub 2011 Feb 4.

PMID:
22112956
17.

Characterization and mode of action of two acetyl xylan esterases from Chrysosporium lucknowense C1 active towards acetylated xylans.

Pouvreau L, Jonathan MC, Kabel MA, Hinz SW, Gruppen H, Schols HA.

Enzyme Microb Technol. 2011 Aug 10;49(3):312-20. doi: 10.1016/j.enzmictec.2011.05.010. Epub 2011 May 23.

PMID:
22112517
18.

Mode of action of Chrysosporium lucknowense C1 α-l-arabinohydrolases.

Kühnel S, Westphal Y, Hinz SW, Schols HA, Gruppen H.

Bioresour Technol. 2011 Jan;102(2):1636-43. doi: 10.1016/j.biortech.2010.09.029. Epub 2010 Sep 22.

PMID:
20933404
19.

Chrysosporium lucknowense arabinohydrolases effectively degrade sugar beet arabinan.

Kühnel S, Hinz SW, Pouvreau L, Wery J, Schols HA, Gruppen H.

Bioresour Technol. 2010 Nov;101(21):8300-7. doi: 10.1016/j.biortech.2010.05.070. Epub 2010 Jun 20.

PMID:
20566287
20.

Branched arabino-oligosaccharides isolated from sugar beet arabinan.

Westphal Y, Kühnel S, de Waard P, Hinz SW, Schols HA, Voragen AG, Gruppen H.

Carbohydr Res. 2010 Jun 16;345(9):1180-9. doi: 10.1016/j.carres.2010.03.042. Epub 2010 Apr 4.

PMID:
20452576
21.

Bifidobacterium carbohydrases-their role in breakdown and synthesis of (potential) prebiotics.

van den Broek LA, Hinz SW, Beldman G, Vincken JP, Voragen AG.

Mol Nutr Food Res. 2008 Jan;52(1):146-63. Review.

PMID:
18040988
22.

Increasing the transglycosylation activity of alpha-galactosidase from Bifidobacterium adolescentis DSM 20083 by site-directed mutagenesis.

Hinz SW, Doeswijk-Voragen CH, Schipperus R, van den Broek LA, Vincken JP, Voragen AG.

Biotechnol Bioeng. 2006 Jan 5;93(1):122-31.

PMID:
16320365
23.

Bifidobacterium longum endogalactanase liberates galactotriose from type I galactans.

Hinz SW, Pastink MI, van den Broek LA, Vincken JP, Voragen AG.

Appl Environ Microbiol. 2005 Sep;71(9):5501-10.

24.

Type I arabinogalactan contains beta-D-Galp-(1-->3)-beta-D-Galp structural elements.

Hinz SW, Verhoef R, Schols HA, Vincken JP, Voragen AG.

Carbohydr Res. 2005 Sep 26;340(13):2135-43.

PMID:
16054605
25.

beta-galactosidase from Bifidobacterium adolescentis DSM20083 prefers beta(1,4)-galactosides over lactose.

Hinz SW, van den Brock LA, Beldman G, Vincken JP, Voragen AG.

Appl Microbiol Biotechnol. 2004 Dec;66(3):276-84.

PMID:
15480628
26.

Supplemental Content

Support Center