Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 17

1.

Rapid additive-free bacteria lysis using traveling surface acoustic waves in microfluidic channels.

Lu H, Mutafopulos K, Heyman JA, Spink P, Shen L, Wang C, Franke T, Weitz DA.

Lab Chip. 2019 Nov 6. doi: 10.1039/c9lc00656g. [Epub ahead of print]

PMID:
31690904
2.

Ultra-high-throughput picoliter-droplet microfluidics screening of the industrial cellulase-producing filamentous fungus Trichoderma reesei.

He R, Ding R, Heyman JA, Zhang D, Tu R.

J Ind Microbiol Biotechnol. 2019 Nov;46(11):1603-1610. doi: 10.1007/s10295-019-02221-2. Epub 2019 Aug 2.

PMID:
31375945
3.

A simple mix-and-read bacteria detection system based on a DNAzyme and a molecular beacon.

Cao T, Wang Y, Zhao LL, Wang Y, Tao Y, Heyman JA, Weitz DA, Zhou YL, Zhang XX.

Chem Commun (Camb). 2019 Jun 20;55(51):7358-7361. doi: 10.1039/c9cc03746b.

PMID:
31172143
4.

Sensitive and predictable separation of microfluidic droplets by size using in-line passive filter.

Ding R, Ung WL, Heyman JA, Weitz DA.

Biomicrofluidics. 2017 Feb 21;11(1):014114. doi: 10.1063/1.4976723. eCollection 2017 Jan.

5.

Single-cell analysis and sorting using droplet-based microfluidics.

Mazutis L, Gilbert J, Ung WL, Weitz DA, Griffiths AD, Heyman JA.

Nat Protoc. 2013 May;8(5):870-91. doi: 10.1038/nprot.2013.046. Epub 2013 Apr 4.

6.

Controlled synthesis of cell-laden microgels by radical-free gelation in droplet microfluidics.

Rossow T, Heyman JA, Ehrlicher AJ, Langhoff A, Weitz DA, Haag R, Seiffert S.

J Am Chem Soc. 2012 Mar 14;134(10):4983-9. doi: 10.1021/ja300460p. Epub 2012 Mar 1.

PMID:
22356466
7.

Droplet microfluidics for high-throughput biological assays.

Guo MT, Rotem A, Heyman JA, Weitz DA.

Lab Chip. 2012 Jun 21;12(12):2146-55. doi: 10.1039/c2lc21147e. Epub 2012 Feb 9. Review.

PMID:
22318506
8.

Hyperbranched polyglycerols on the nanometer and micrometer scale.

Steinhilber D, Seiffert S, Heyman JA, Paulus F, Weitz DA, Haag R.

Biomaterials. 2011 Feb;32(5):1311-6. doi: 10.1016/j.biomaterials.2010.10.010. Epub 2010 Nov 2.

PMID:
21047679
9.

Subcellular localization of the yeast proteome.

Kumar A, Agarwal S, Heyman JA, Matson S, Heidtman M, Piccirillo S, Umansky L, Drawid A, Jansen R, Liu Y, Cheung KH, Miller P, Gerstein M, Roeder GS, Snyder M.

Genes Dev. 2002 Mar 15;16(6):707-19.

10.

High-throughput expression of fusion proteins.

Nasoff M, Bergseid M, Hoeffler JP, Heyman JA.

Methods Enzymol. 2000;328:515-29.

PMID:
11075364
11.

The transcriptional response of yeast to saline stress.

Posas F, Chambers JR, Heyman JA, Hoeffler JP, de Nadal E, Ariño J.

J Biol Chem. 2000 Jun 9;275(23):17249-55.

12.

Genome-scale cloning and expression of individual open reading frames using topoisomerase I-mediated ligation.

Heyman JA, Cornthwaite J, Foncerrada L, Gilmore JR, Gontang E, Hartman KJ, Hernandez CL, Hood R, Hull HM, Lee WY, Marcil R, Marsh EJ, Mudd KM, Patino MJ, Purcell TJ, Rowland JJ, Sindici ML, Hoeffler JP.

Genome Res. 1999 Apr;9(4):383-92.

13.

Use of Pichia pastoris as a model eukaryotic system. Peroxisome biogenesis.

Faber KN, Elgersma Y, Heyman JA, Koller A, Lüers GH, Nuttley WM, Terlecky SR, Wenzel TJ, Subramani S.

Methods Mol Biol. 1998;103:121-47. No abstract available.

PMID:
9680638
15.

Labeling of peroxisomes with green fluorescent protein in living P. pastoris cells.

Monosov EZ, Wenzel TJ, Lüers GH, Heyman JA, Subramani S.

J Histochem Cytochem. 1996 Jun;44(6):581-9.

PMID:
8666743
16.

Role of the PAS1 gene of Pichia pastoris in peroxisome biogenesis.

Heyman JA, Monosov E, Subramani S.

J Cell Biol. 1994 Dec;127(5):1259-73.

17.

Development of the yeast Pichia pastoris as a model organism for a genetic and molecular analysis of peroxisome assembly.

Gould SJ, McCollum D, Spong AP, Heyman JA, Subramani S.

Yeast. 1992 Aug;8(8):613-28.

PMID:
1441741

Supplemental Content

Loading ...
Support Center