Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 22

1.

PP4-dependent HDAC3 dephosphorylation discriminates between axonal regeneration and regenerative failure.

Hervera A, Zhou L, Palmisano I, McLachlan E, Kong G, Hutson TH, Danzi MC, Lemmon VP, Bixby JL, Matamoros-Angles A, Forsberg K, De Virgiliis F, Matheos DP, Kwapis J, Wood MA, Puttagunta R, Del Río JA, Di Giovanni S.

EMBO J. 2019 May 22. pii: e101032. doi: 10.15252/embj.2018101032. [Epub ahead of print]

PMID:
31118250
2.

Cbp-dependent histone acetylation mediates axon regeneration induced by environmental enrichment in rodent spinal cord injury models.

Hutson TH, Kathe C, Palmisano I, Bartholdi K, Hervera A, De Virgiliis F, McLachlan E, Zhou L, Kong G, Barraud Q, Danzi MC, Medrano-Fernandez A, Lopez-Atalaya JP, Boutillier AL, Sinha SH, Singh AK, Chaturbedy P, Moon LDF, Kundu TK, Bixby JL, Lemmon VP, Barco A, Courtine G, Di Giovanni S.

Sci Transl Med. 2019 Apr 10;11(487). pii: eaaw2064. doi: 10.1126/scitranslmed.aaw2064.

PMID:
30971452
3.

Paracrine Mechanisms of Redox Signalling for Postmitotic Cell and Tissue Regeneration.

Hervera A, Santos CX, De Virgiliis F, Shah AM, Di Giovanni S.

Trends Cell Biol. 2019 Jun;29(6):514-530. doi: 10.1016/j.tcb.2019.01.006. Epub 2019 Feb 19. Review.

PMID:
30795898
4.

Challenges and Future Prospects on 3D in-vitro Modeling of the Neuromuscular Circuit.

Badiola-Mateos M, Hervera A, Del Río JA, Samitier J.

Front Bioeng Biotechnol. 2018 Dec 11;6:194. doi: 10.3389/fbioe.2018.00194. eCollection 2018. Review.

5.

Publisher Correction: Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons.

Hervera A, De Virgiliis F, Palmisano I, Zhou L, Tantardini E, Kong G, Hutson T, Danzi MC, Perry RB, Santos CXC, Kapustin AN, Fleck RA, Del Río JA, Carroll T, Lemmon V, Bixby JL, Shah AM, Fainzilber M, Di Giovanni S.

Nat Cell Biol. 2018 Sep;20(9):1098. doi: 10.1038/s41556-018-0063-x.

PMID:
29520084
6.

Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons.

Hervera A, De Virgiliis F, Palmisano I, Zhou L, Tantardini E, Kong G, Hutson T, Danzi MC, Perry RB, Santos CXC, Kapustin AN, Fleck RA, Del Río JA, Carroll T, Lemmon V, Bixby JL, Shah AM, Fainzilber M, Di Giovanni S.

Nat Cell Biol. 2018 Mar;20(3):307-319. doi: 10.1038/s41556-018-0039-x. Epub 2018 Feb 12. Erratum in: Nat Cell Biol. 2018 Mar 8;:.

PMID:
29434374
7.

Erratum to: Involvement of Cellular Prion Protein in α-Synuclein Transport in Neurons.

Urrea L, Segura-Feliu M, Masuda-Suzukake M, Hervera A, Pedraz L, García-Aznar JM, Vila M, Samitier J, Torrents E, Ferrer I, Gavín R, Hagesawa M, Del Río JA.

Mol Neurobiol. 2018 Mar;55(3):1861. doi: 10.1007/s12035-017-0553-z. No abstract available.

PMID:
28477141
8.

iPS Cell Cultures from a Gerstmann-Sträussler-Scheinker Patient with the Y218N PRNP Mutation Recapitulate tau Pathology.

Matamoros-Angles A, Gayosso LM, Richaud-Patin Y, di Domenico A, Vergara C, Hervera A, Sousa A, Fernández-Borges N, Consiglio A, Gavín R, López de Maturana R, Ferrer I, López de Munain A, Raya Á, Castilla J, Sánchez-Pernaute R, Del Río JA.

Mol Neurobiol. 2018 Apr;55(4):3033-3048. doi: 10.1007/s12035-017-0506-6. Epub 2017 May 2.

9.

Involvement of Cellular Prion Protein in α-Synuclein Transport in Neurons.

Urrea L, Segura-Feliu M, Masuda-Suzukake M, Hervera A, Pedraz L, García-Aznar JM, Vila M, Samitier J, Torrents E, Ferrer I, Gavín R, Hagesawa M, Del Río JA.

Mol Neurobiol. 2018 Mar;55(3):1847-1860. doi: 10.1007/s12035-017-0451-4. Epub 2017 Feb 22. Erratum in: Mol Neurobiol. 2017 May 5;:.

10.

The MDM4/MDM2-p53-IGF1 axis controls axonal regeneration, sprouting and functional recovery after CNS injury.

Joshi Y, Sória MG, Quadrato G, Inak G, Zhou L, Hervera A, Rathore KI, Elnaggar M, Cucchiarini M, Marine JC, Puttagunta R, Di Giovanni S.

Brain. 2015 Jul;138(Pt 7):1843-62. doi: 10.1093/brain/awv125. Epub 2015 May 16. Erratum in: Brain. 2016 Jan;139(Pt 1):e7. Magali, Cucchiarini [corrected to Cucchiarini, Magali].

11.

PCAF-dependent epigenetic changes promote axonal regeneration in the central nervous system.

Puttagunta R, Tedeschi A, Sória MG, Hervera A, Lindner R, Rathore KI, Gaub P, Joshi Y, Nguyen T, Schmandke A, Laskowski CJ, Boutillier AL, Bradke F, Di Giovanni S.

Nat Commun. 2014 Apr 1;5:3527. doi: 10.1038/ncomms4527.

PMID:
24686445
12.

Treatment with a carbon monoxide-releasing molecule inhibits chronic inflammatory pain in mice: nitric oxide contribution.

Negrete R, Hervera A, Leánez S, Pol O.

Psychopharmacology (Berl). 2014 Mar;231(5):853-61. doi: 10.1007/s00213-013-3302-7. Epub 2013 Oct 11.

PMID:
24114430
13.

Effects of treatment with a carbon monoxide-releasing molecule and a heme oxygenase 1 inducer in the antinociceptive effects of morphine in different models of acute and chronic pain in mice.

Hervera A, Gou G, Leánez S, Pol O.

Psychopharmacology (Berl). 2013 Aug;228(3):463-77. doi: 10.1007/s00213-013-3053-5. Epub 2013 Mar 13.

PMID:
23483201
14.

Treatment with carbon monoxide-releasing molecules and an HO-1 inducer enhances the effects and expression of µ-opioid receptors during neuropathic pain.

Hervera A, Leánez S, Motterlini R, Pol O.

Anesthesiology. 2013 May;118(5):1180-97. doi: 10.1097/ALN.0b013e318286d085.

PMID:
23358127
15.

Carbon monoxide reduces neuropathic pain and spinal microglial activation by inhibiting nitric oxide synthesis in mice.

Hervera A, Leánez S, Negrete R, Motterlini R, Pol O.

PLoS One. 2012;7(8):e43693. doi: 10.1371/journal.pone.0043693. Epub 2012 Aug 22.

16.

The inhibition of the nitric oxide-cGMP-PKG-JNK signaling pathway avoids the development of tolerance to the local antiallodynic effects produced by morphine during neuropathic pain.

Hervera A, Leánez S, Pol O.

Eur J Pharmacol. 2012 Jun 15;685(1-3):42-51. doi: 10.1016/j.ejphar.2012.04.009. Epub 2012 Apr 20.

PMID:
22546233
17.

The antinociceptive effects of JWH-015 in chronic inflammatory pain are produced by nitric oxide-cGMP-PKG-KATP pathway activation mediated by opioids.

Negrete R, Hervera A, Leánez S, Martín-Campos JM, Pol O.

PLoS One. 2011;6(10):e26688. doi: 10.1371/journal.pone.0026688. Epub 2011 Oct 21.

18.

Peripheral effects of morphine and expression of μ-opioid receptors in the dorsal root ganglia during neuropathic pain: nitric oxide signaling.

Hervera A, Negrete R, Leánez S, Martín-Campos JM, Pol O.

Mol Pain. 2011 Apr 12;7:25. doi: 10.1186/1744-8069-7-25.

19.

The spinal cord expression of neuronal and inducible nitric oxide synthases and their contribution in the maintenance of neuropathic pain in mice.

Hervera A, Negrete R, Leánez S, Martín-Campos JM, Pol O.

PLoS One. 2010 Dec 13;5(12):e14321. doi: 10.1371/journal.pone.0014321.

20.

The role of nitric oxide in the local antiallodynic and antihyperalgesic effects and expression of delta-opioid and cannabinoid-2 receptors during neuropathic pain in mice.

Hervera A, Negrete R, Leánez S, Martín-Campos J, Pol O.

J Pharmacol Exp Ther. 2010 Sep 1;334(3):887-96. doi: 10.1124/jpet.110.167585. Epub 2010 May 24.

PMID:
20498253
21.

The peripheral administration of a nitric oxide donor potentiates the local antinociceptive effects of a DOR agonist during chronic inflammatory pain in mice.

Hervera A, Leánez S, Negrete R, Pol O.

Naunyn Schmiedebergs Arch Pharmacol. 2009 Oct;380(4):345-52. doi: 10.1007/s00210-009-0436-6. Epub 2009 Jul 28.

PMID:
19636536
22.

Peripheral antinociceptive effects of mu- and delta-opioid receptor agonists in NOS2 and NOS1 knockout mice during chronic inflammatory pain.

Leánez S, Hervera A, Pol O.

Eur J Pharmacol. 2009 Jan 5;602(1):41-9. doi: 10.1016/j.ejphar.2008.11.019. Epub 2008 Nov 18.

PMID:
19041302

Supplemental Content

Loading ...
Support Center