Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 173

1.

Biochemical pathway for the biosynthesis of the CuA center in bacterial cytochrome c oxidase.

Canonica F, Hennecke H, Glockshuber R.

FEBS Lett. 2019 Nov;593(21):2977-2989. doi: 10.1002/1873-3468.13587. Epub 2019 Sep 10. Review.

PMID:
31449676
2.

Structural basis and mechanism for metallochaperone-assisted assembly of the CuA center in cytochrome oxidase.

Canonica F, Klose D, Ledermann R, Sauer MM, Abicht HK, Quade N, Gossert AD, Chesnov S, Fischer HM, Jeschke G, Hennecke H, Glockshuber R.

Sci Adv. 2019 Jul 31;5(7):eaaw8478. doi: 10.1126/sciadv.aaw8478. eCollection 2019 Jul.

3.

Requirements for Efficient Thiosulfate Oxidation in Bradyrhizobium diazoefficiens.

Masuda S, Hennecke H, Fischer HM.

Genes (Basel). 2017 Dec 15;8(12). pii: E390. doi: 10.3390/genes8120390.

4.

How periplasmic thioredoxin TlpA reduces bacterial copper chaperone ScoI and cytochrome oxidase subunit II (CoxB) prior to metallation.

Abicht HK, Schärer MA, Quade N, Ledermann R, Mohorko E, Capitani G, Hennecke H, Glockshuber R.

J Biol Chem. 2014 Nov 21;289(47):32431-44. doi: 10.1074/jbc.M114.607127. Epub 2014 Oct 1.

5.

A link between arabinose utilization and oxalotrophy in Bradyrhizobium japonicum.

Koch M, Delmotte N, Ahrens CH, Omasits U, Schneider K, Danza F, Padhi B, Murset V, Braissant O, Vorholt JA, Hennecke H, Pessi G.

Appl Environ Microbiol. 2014 Apr;80(7):2094-101. doi: 10.1128/AEM.03314-13. Epub 2014 Jan 24.

6.

The structure of Bradyrhizobium japonicum transcription factor FixK2 unveils sites of DNA binding and oxidation.

Bonnet M, Kurz M, Mesa S, Briand C, Hennecke H, Grütter MG.

J Biol Chem. 2013 May 17;288(20):14238-46. doi: 10.1074/jbc.M113.465484. Epub 2013 Apr 1.

7.

Molecular insights into environmental microbes.

Hennecke H, Kjelleberg S, Brussaard C.

FEMS Microbiol Rev. 2013 May;37(3):285. doi: 10.1111/1574-6976.12017. Epub 2013 Mar 22. No abstract available.

8.

FixK₂, a key regulator in Bradyrhizobium japonicum, is a substrate for the protease ClpAP in vitro.

Bonnet M, Stegmann M, Maglica Ž, Stiegeler E, Weber-Ban E, Hennecke H, Mesa S.

FEBS Lett. 2013 Jan 4;587(1):88-93. doi: 10.1016/j.febslet.2012.11.014. Epub 2012 Nov 24.

9.

Thioredoxin-like protein TlpA from Bradyrhizobium japonicum is a reductant for the copper metallochaperone ScoI.

Mohorko E, Abicht HK, Bühler D, Glockshuber R, Hennecke H, Fischer HM.

FEBS Lett. 2012 Nov 30;586(23):4094-9. doi: 10.1016/j.febslet.2012.10.026. Epub 2012 Nov 1.

10.

Copper starvation-inducible protein for cytochrome oxidase biogenesis in Bradyrhizobium japonicum.

Serventi F, Youard ZA, Murset V, Huwiler S, Bühler D, Richter M, Luchsinger R, Fischer HM, Brogioli R, Niederer M, Hennecke H.

J Biol Chem. 2012 Nov 9;287(46):38812-23. doi: 10.1074/jbc.M112.406173. Epub 2012 Sep 25.

11.

Reactive oxygen species-inducible ECF σ factors of Bradyrhizobium japonicum.

Masloboeva N, Reutimann L, Stiefel P, Follador R, Leimer N, Hennecke H, Mesa S, Fischer HM.

PLoS One. 2012;7(8):e43421. doi: 10.1371/journal.pone.0043421. Epub 2012 Aug 16.

12.

Genome-wide transcription analysis of Escherichia coli in response to extremely low-frequency magnetic fields.

Huwiler SG, Beyer C, Fröhlich J, Hennecke H, Egli T, Schürmann D, Rehrauer H, Fischer HM.

Bioelectromagnetics. 2012 Sep;33(6):488-96. doi: 10.1002/bem.21709. Epub 2012 Feb 13.

PMID:
22331529
13.

Isovaleryl-homoserine lactone, an unusual branched-chain quorum-sensing signal from the soybean symbiont Bradyrhizobium japonicum.

Lindemann A, Pessi G, Schaefer AL, Mattmann ME, Christensen QH, Kessler A, Hennecke H, Blackwell HE, Greenberg EP, Harwood CS.

Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16765-70. doi: 10.1073/pnas.1114125108. Epub 2011 Sep 26.

14.

Host-specific symbiotic requirement of BdeAB, a RegR-controlled RND-type efflux system in Bradyrhizobium japonicum.

Lindemann A, Koch M, Pessi G, Müller AJ, Balsiger S, Hennecke H, Fischer HM.

FEMS Microbiol Lett. 2010 Nov;312(2):184-91. doi: 10.1111/j.1574-6968.2010.02115.x. Epub 2010 Sep 30.

15.

Autoregulation of fixK(2) gene expression in Bradyrhizobium japonicum.

Reutimann L, Mesa S, Hennecke H.

Mol Genet Genomics. 2010 Jul;284(1):25-32. doi: 10.1007/s00438-010-0547-2. Epub 2010 Jun 4.

PMID:
20524010
16.

Rhizobial adaptation to hosts, a new facet in the legume root-nodule symbiosis.

Koch M, Delmotte N, Rehrauer H, Vorholt JA, Pessi G, Hennecke H.

Mol Plant Microbe Interact. 2010 Jun;23(6):784-90. doi: 10.1094/MPMI-23-6-0784.

17.

Disparate pathways for the biogenesis of cytochrome oxidases in Bradyrhizobium japonicum.

Bühler D, Rossmann R, Landolt S, Balsiger S, Fischer HM, Hennecke H.

J Biol Chem. 2010 May 21;285(21):15704-13. doi: 10.1074/jbc.M109.085217. Epub 2010 Mar 24.

18.

An integrated proteomics and transcriptomics reference data set provides new insights into the Bradyrhizobium japonicum bacteroid metabolism in soybean root nodules.

Delmotte N, Ahrens CH, Knief C, Qeli E, Koch M, Fischer HM, Vorholt JA, Hennecke H, Pessi G.

Proteomics. 2010 Apr;10(7):1391-400. doi: 10.1002/pmic.200900710.

PMID:
20104621
19.

Posttranslational control of transcription factor FixK2, a key regulator for the Bradyrhizobium japonicum-soybean symbiosis.

Mesa S, Reutimann L, Fischer HM, Hennecke H.

Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21860-5. doi: 10.1073/pnas.0908097106. Epub 2009 Dec 2.

20.

Comprehensive assessment of the regulons controlled by the FixLJ-FixK2-FixK1 cascade in Bradyrhizobium japonicum.

Mesa S, Hauser F, Friberg M, Malaguti E, Fischer HM, Hennecke H.

J Bacteriol. 2008 Oct;190(20):6568-79. doi: 10.1128/JB.00748-08. Epub 2008 Aug 8.

21.

Genome-wide transcript analysis of Bradyrhizobium japonicum bacteroids in soybean root nodules.

Pessi G, Ahrens CH, Rehrauer H, Lindemann A, Hauser F, Fischer HM, Hennecke H.

Mol Plant Microbe Interact. 2007 Nov;20(11):1353-63.

22.

New target genes controlled by the Bradyrhizobium japonicum two-component regulatory system RegSR.

Lindemann A, Moser A, Pessi G, Hauser F, Friberg M, Hennecke H, Fischer HM.

J Bacteriol. 2007 Dec;189(24):8928-43. Epub 2007 Oct 19.

23.

Dissection of the Bradyrhizobium japonicum NifA+sigma54 regulon, and identification of a ferredoxin gene (fdxN) for symbiotic nitrogen fixation.

Hauser F, Pessi G, Friberg M, Weber C, Rusca N, Lindemann A, Fischer HM, Hennecke H.

Mol Genet Genomics. 2007 Sep;278(3):255-71. Epub 2007 Jun 15.

PMID:
17569992
24.

Beyond the Fur paradigm: iron-controlled gene expression in rhizobia.

Rudolph G, Hennecke H, Fischer HM.

FEMS Microbiol Rev. 2006 Jul;30(4):631-48. Review.

25.

Bradyrhizobium japonicum senses iron through the status of haem to regulate iron homeostasis and metabolism.

Yang J, Sangwan I, Lindemann A, Hauser F, Hennecke H, Fischer HM, O'Brian MR.

Mol Microbiol. 2006 Apr;60(2):427-37.

26.

A multitude of CRP/FNR-like transcription proteins in Bradyrhizobium japonicum.

Mesa S, Hennecke H, Fischer HM.

Biochem Soc Trans. 2006 Feb;34(Pt 1):156-9. Review.

PMID:
16417509
27.

The Iron control element, acting in positive and negative control of iron-regulated Bradyrhizobium japonicum genes, is a target for the Irr protein.

Rudolph G, Semini G, Hauser F, Lindemann A, Friberg M, Hennecke H, Fischer HM.

J Bacteriol. 2006 Jan;188(2):733-44. Erratum in: J Bacteriol. 2006 Mar;188(6):2294.

28.

Design and validation of a partial-genome microarray for transcriptional profiling of the Bradyrhizobium japonicum symbiotic gene region.

Hauser F, Lindemann A, Vuilleumier S, Patrignani A, Schlapbach R, Fischer HM, Hennecke H.

Mol Genet Genomics. 2006 Jan;275(1):55-67. Epub 2005 Nov 17.

PMID:
16328374
29.

Transcription activation in vitro by the Bradyrhizobium japonicum regulatory protein FixK2.

Mesa S, Ucurum Z, Hennecke H, Fischer HM.

J Bacteriol. 2005 May;187(10):3329-38.

30.
31.

Bradyrhizobium japonicum NnrR, a denitrification regulator, expands the FixLJ-FixK2 regulatory cascade.

Mesa S, Bedmar EJ, Chanfon A, Hennecke H, Fischer HM.

J Bacteriol. 2003 Jul;185(13):3978-82.

32.

New NodW- or NifA-regulated Bradyrhizobium japonicum genes.

Caldelari Baumberger I, Fraefel N, Göttfert M, Hennecke H.

Mol Plant Microbe Interact. 2003 Apr;16(4):342-51.

33.

A mRNA-based thermosensor controls expression of rhizobial heat shock genes.

Nocker A, Hausherr T, Balsiger S, Krstulovic NP, Hennecke H, Narberhaus F.

Nucleic Acids Res. 2001 Dec 1;29(23):4800-7.

34.

Discovery of a haem uptake system in the soil bacterium Bradyrhizobium japonicum.

Nienaber A, Hennecke H, Fischer HM.

Mol Microbiol. 2001 Aug;41(4):787-800.

35.

Structure of the soluble domain of a membrane-anchored thioredoxin-like protein from Bradyrhizobium japonicum reveals unusual properties.

Capitani G, Rossmann R, Sargent DF, Grütter MG, Richmond TJ, Hennecke H.

J Mol Biol. 2001 Aug 31;311(5):1037-48.

PMID:
11531338
36.

Phosphatidylcholine levels in Bradyrhizobium japonicum membranes are critical for an efficient symbiosis with the soybean host plant.

Minder AC, de Rudder KE, Narberhaus F, Fischer HM, Hennecke H, Geiger O.

Mol Microbiol. 2001 Mar;39(5):1186-98.

37.

Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome.

Göttfert M, Röthlisberger S, Kündig C, Beck C, Marty R, Hennecke H.

J Bacteriol. 2001 Feb;183(4):1405-12.

38.

One of two hemN genes in Bradyrhizobium japonicum is functional during anaerobic growth and in symbiosis.

Fischer HM, Velasco L, Delgado MJ, Bedmar EJ, Schären S, Zingg D, Göttfert M, Hennecke H.

J Bacteriol. 2001 Feb;183(4):1300-11.

39.

An imperfect inverted repeat is critical for DNA binding of the response regulator RegR of Bradyrhizobium japonicum.

Emmerich R, Strehler P, Hennecke H, Fischer HM.

Nucleic Acids Res. 2000 Nov 1;28(21):4166-71.

40.

Differential degradation of Escherichia coli sigma32 and Bradyrhizobium japonicum RpoH factors by the FtsH protease.

Urech C, Koby S, Oppenheim AB, Münchbach M, Hennecke H, Narberhaus F.

Eur J Biochem. 2000 Aug;267(15):4831-9.

41.

Periplasmic protein thiol:disulfide oxidoreductases of Escherichia coli.

Fabianek RA, Hennecke H, Thöny-Meyer L.

FEMS Microbiol Rev. 2000 Jul;24(3):303-16. Review.

42.

The symbiotically essential cbb(3)-type oxidase of Bradyrhizobium japonicum is a proton pump.

Arslan E, Kannt A, Thöny-Meyer L, Hennecke H.

FEBS Lett. 2000 Mar 17;470(1):7-10.

43.

Three new NifA-regulated genes in the Bradyrhizobium japonicum symbiotic gene region discovered by competitive DNA-RNA hybridization.

Nienaber A, Huber A, Göttfert M, Hennecke H, Fischer HM.

J Bacteriol. 2000 Mar;182(6):1472-80.

44.
45.

Role of HrcA and CIRCE in the heat shock regulatory network of Bradyrhizobium japonicum.

Minder AC, Fischer HM, Hennecke H, Narberhaus F.

J Bacteriol. 2000 Jan;182(1):14-22.

46.

Classifying symbiotic proteins from Bradyrhizobium japonicum into functional groups by proteome analysis of altered gene expression levels.

Dainese-Hatt P, Fischer HM, Hennecke H, James P.

Electrophoresis. 1999 Dec;20(18):3514-20.

PMID:
10612277
47.

Characterization of the Bradyrhizobium japonicum ftsH gene and its product.

Narberhaus F, Urech C, Hennecke H.

J Bacteriol. 1999 Dec;181(23):7394-7.

48.

Phosphorylation, dephosphorylation and DNA-binding of the Bradyrhizobium japonicum RegSR two-component regulatory proteins.

Emmerich R, Panglungtshang K, Strehler P, Hennecke H, Fischer HM.

Eur J Biochem. 1999 Jul;263(2):455-63.

49.

Heme transfer to the heme chaperone CcmE during cytochrome c maturation requires the CcmC protein, which may function independently of the ABC-transporter CcmAB.

Schulz H, Fabianek RA, Pellicioli EC, Hennecke H, Thöny-Meyer L.

Proc Natl Acad Sci U S A. 1999 May 25;96(11):6462-7.

50.

Bradyrhizobium japonicum FixK2, a crucial distributor in the FixLJ-dependent regulatory cascade for control of genes inducible by low oxygen levels.

Nellen-Anthamatten D, Rossi P, Preisig O, Kullik I, Babst M, Fischer HM, Hennecke H.

J Bacteriol. 1998 Oct;180(19):5251-5.

Supplemental Content

Loading ...
Support Center