Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 342

1.

CUT&Tag for efficient epigenomic profiling of small samples and single cells.

Kaya-Okur HS, Wu SJ, Codomo CA, Pledger ES, Bryson TD, Henikoff JG, Ahmad K, Henikoff S.

Nat Commun. 2019 Apr 29;10(1):1930. doi: 10.1038/s41467-019-09982-5.

2.

Chromatin Bottlenecks in Cancer.

Sarthy JF, Henikoff S, Ahmad K.

Trends Cancer. 2019 Mar;5(3):183-194. doi: 10.1016/j.trecan.2019.01.003. Epub 2019 Feb 26. Review.

PMID:
30898265
3.

Old cogs, new tricks: the evolution of gene expression in a chromatin context.

Talbert PB, Meers MP, Henikoff S.

Nat Rev Genet. 2019 May;20(5):283-297. doi: 10.1038/s41576-019-0105-7. Review.

PMID:
30886348
4.

Automated in situ chromatin profiling efficiently resolves cell types and gene regulatory programs.

Janssens DH, Wu SJ, Sarthy JF, Meers MP, Myers CH, Olson JM, Ahmad K, Henikoff S.

Epigenetics Chromatin. 2018 Dec 21;11(1):74. doi: 10.1186/s13072-018-0243-8.

5.

RSC-Associated Subnucleosomes Define MNase-Sensitive Promoters in Yeast.

Brahma S, Henikoff S.

Mol Cell. 2019 Jan 17;73(2):238-249.e3. doi: 10.1016/j.molcel.2018.10.046. Epub 2018 Dec 13.

PMID:
30554944
6.

No strand left behind.

Ahmad K, Henikoff S.

Science. 2018 Sep 28;361(6409):1311-1312. doi: 10.1126/science.aav0871. No abstract available.

PMID:
30262484
7.

MINCE-Seq: Mapping In Vivo Nascent Chromatin with EdU and Sequencing.

Ramachandran S, Henikoff S.

Methods Mol Biol. 2018;1832:159-168. doi: 10.1007/978-1-4939-8663-7_8.

PMID:
30073526
8.

Pioneers Invade the Nucleosomal Landscape.

Henikoff S, Ramachandran S.

Mol Cell. 2018 Jul 19;71(2):193-194. doi: 10.1016/j.molcel.2018.07.004.

PMID:
30028998
9.

Transcribing Centromeres: Noncoding RNAs and Kinetochore Assembly.

Talbert PB, Henikoff S.

Trends Genet. 2018 Aug;34(8):587-599. doi: 10.1016/j.tig.2018.05.001. Epub 2018 Jun 2. Review.

PMID:
29871772
10.

Simultaneous Discovery of Cell-Free DNA and the Nucleosome Ladder.

Henikoff S, Church GM.

Genetics. 2018 May;209(1):27-29. doi: 10.1534/genetics.118.300775. No abstract available.

11.

Targeted in situ genome-wide profiling with high efficiency for low cell numbers.

Skene PJ, Henikoff JG, Henikoff S.

Nat Protoc. 2018 May;13(5):1006-1019. doi: 10.1038/nprot.2018.015. Epub 2018 Apr 12.

PMID:
29651053
12.

Precise genome-wide mapping of single nucleosomes and linkers in vivo.

Chereji RV, Ramachandran S, Bryson TD, Henikoff S.

Genome Biol. 2018 Feb 9;19(1):19. doi: 10.1186/s13059-018-1398-0.

13.

Unexpected conformational variations of the human centromeric chromatin complex.

Thakur J, Henikoff S.

Genes Dev. 2018 Jan 1;32(1):20-25. doi: 10.1101/gad.307736.117. Epub 2018 Jan 31.

14.

Non-B-Form DNA Is Enriched at Centromeres.

Kasinathan S, Henikoff S.

Mol Biol Evol. 2018 Apr 1;35(4):949-962. doi: 10.1093/molbev/msy010. Erratum in: Mol Biol Evol. 2018 Jul 1;35(7):1821.

15.

Simple and Complex Centromeric Satellites in Drosophila Sibling Species.

Talbert PB, Kasinathan S, Henikoff S.

Genetics. 2018 Mar;208(3):977-990. doi: 10.1534/genetics.117.300620. Epub 2018 Jan 5.

16.

Transcription and Remodeling Produce Asymmetrically Unwrapped Nucleosomal Intermediates.

Ramachandran S, Ahmad K, Henikoff S.

Mol Cell. 2017 Dec 21;68(6):1038-1053.e4. doi: 10.1016/j.molcel.2017.11.015. Epub 2017 Dec 7.

17.

Remarkable Evolutionary Plasticity of Centromeric Chromatin.

Henikoff S, Thakur J, Kasinathan S, Talbert PB.

Cold Spring Harb Symp Quant Biol. 2017;82:71-82. doi: 10.1101/sqb.2017.82.033605. Epub 2017 Dec 1.

PMID:
29196559
18.

Structural Biology: Probing the Origins of Chromatin.

Henikoff S.

Curr Biol. 2017 Oct 23;27(20):R1118-R1120. doi: 10.1016/j.cub.2017.08.063.

19.

Corrigendum: ChEC-seq kinetics discriminates transcription factor binding sites by DNA sequence and shape in vivo.

Zentner GE, Kasinathan S, Xin B, Rohs R, Henikoff S.

Nat Commun. 2017 Jun 5;8:15723. doi: 10.1038/ncomms15723.

20.

Correspondence: Reply to 'DNA shape is insufficient to explain binding'.

Kasinathan S, Zentner GE, Xin B, Rohs R, Henikoff S.

Nat Commun. 2017 Jun 5;8:15644. doi: 10.1038/ncomms15644. No abstract available.

21.

Capitalizing on disaster: Establishing chromatin specificity behind the replication fork.

Ramachandran S, Ahmad K, Henikoff S.

Bioessays. 2017 Apr;39(4). doi: 10.1002/bies.201600150. Epub 2017 Jan 30. Review.

22.

An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites.

Skene PJ, Henikoff S.

Elife. 2017 Jan 16;6. pii: e21856. doi: 10.7554/eLife.21856.

23.

Histone variants on the move: substrates for chromatin dynamics.

Talbert PB, Henikoff S.

Nat Rev Mol Cell Biol. 2017 Feb;18(2):115-126. doi: 10.1038/nrm.2016.148. Epub 2016 Dec 7. Review.

PMID:
27924075
24.

Mediator binding to UASs is broadly uncoupled from transcription and cooperative with TFIID recruitment to promoters.

Grünberg S, Henikoff S, Hahn S, Zentner GE.

EMBO J. 2016 Nov 15;35(22):2435-2446. Epub 2016 Oct 20.

25.

Mechanisms of Nucleosome Dynamics In Vivo.

Henikoff S.

Cold Spring Harb Perspect Med. 2016 Sep 1;6(9). pii: a026666. doi: 10.1101/cshperspect.a026666. Review.

26.

Epigenetics, cellular memory and gene regulation.

Henikoff S, Greally JM.

Curr Biol. 2016 Jul 25;26(14):R644-8. doi: 10.1016/j.cub.2016.06.011.

27.

CENPT bridges adjacent CENPA nucleosomes on young human α-satellite dimers.

Thakur J, Henikoff S.

Genome Res. 2016 Sep;26(9):1178-87. doi: 10.1101/gr.204784.116. Epub 2016 Jul 6.

28.

Transcriptional Regulators Compete with Nucleosomes Post-replication.

Ramachandran S, Henikoff S.

Cell. 2016 Apr 21;165(3):580-92. doi: 10.1016/j.cell.2016.02.062. Epub 2016 Apr 7.

29.

Nucleosome dynamics during chromatin remodeling in vivo.

Ramachandran S, Henikoff S.

Nucleus. 2016;7(1):20-6. doi: 10.1080/19491034.2016.1149666. Epub 2016 Mar 2.

30.

Evolutionary Turnover of Kinetochore Proteins: A Ship of Theseus?

Drinnenberg IA, Henikoff S, Malik HS.

Trends Cell Biol. 2016 Jul;26(7):498-510. doi: 10.1016/j.tcb.2016.01.005. Epub 2016 Feb 11. Review.

31.

Corrigendum: ChEC-seq kinetics discriminates transcription factor binding sites by DNA sequence and shape in vivo.

Zentner GE, Kasinathan S, Xin B, Rohs R, Henikoff S.

Nat Commun. 2015 Dec 16;6:10264. doi: 10.1038/ncomms10264. No abstract available.

32.

ChEC-seq kinetics discriminates transcription factor binding sites by DNA sequence and shape in vivo.

Zentner GE, Kasinathan S, Xin B, Rohs R, Henikoff S.

Nat Commun. 2015 Oct 22;6:8733. doi: 10.1038/ncomms9733. Erratum in: Nat Commun. 2015;6:10264.

33.

Inner Kinetochore Protein Interactions with Regional Centromeres of Fission Yeast.

Thakur J, Talbert PB, Henikoff S.

Genetics. 2015 Oct;201(2):543-61. doi: 10.1534/genetics.115.179788. Epub 2015 Aug 13.

34.

Replicating Nucleosomes.

Ramachandran S, Henikoff S.

Sci Adv. 2015 Aug 7;1(7). pii: e1500587.

35.

The Genetic Map Enters Its Second Century.

Henikoff S.

Genetics. 2015 Jul;200(3):671-4. doi: 10.1534/genetics.115.178434.

36.

Epigenomic Landscapes Reflect Neuronal Diversity.

Henikoff S.

Neuron. 2015 Jun 17;86(6):1319-21. doi: 10.1016/j.neuron.2015.06.002.

37.

A simple method for generating high-resolution maps of genome-wide protein binding.

Skene PJ, Henikoff S.

Elife. 2015 Jun 16;4:e09225. doi: 10.7554/eLife.09225.

38.

Epigenome editing made easy.

Zentner GE, Henikoff S.

Nat Biotechnol. 2015 Jun;33(6):606-7. doi: 10.1038/nbt.3248. No abstract available.

PMID:
26057978
39.

Diversity in the organization of centromeric chromatin.

Steiner FA, Henikoff S.

Curr Opin Genet Dev. 2015 Apr;31:28-35. doi: 10.1016/j.gde.2015.03.010. Epub 2015 May 16. Review.

PMID:
25956076
40.

A unique chromatin complex occupies young α-satellite arrays of human centromeres.

Henikoff JG, Thakur J, Kasinathan S, Henikoff S.

Sci Adv. 2015 Feb 12;1(1). pii: e1400234.

41.

Mapping regulatory factors by immunoprecipitation from native chromatin.

Orsi GA, Kasinathan S, Zentner GE, Henikoff S, Ahmad K.

Curr Protoc Mol Biol. 2015 Apr 1;110:21.31.1-25. doi: 10.1002/0471142727.mb2131s110.

42.

Methylation-sensitive expression of a DNA demethylase gene serves as an epigenetic rheostat.

Williams BP, Pignatta D, Henikoff S, Gehring M.

PLoS Genet. 2015 Mar 31;11(3):e1005142. doi: 10.1371/journal.pgen.1005142. eCollection 2015 Mar.

43.

Anthracyclines induce double-strand DNA breaks at active gene promoters.

Yang F, Kemp CJ, Henikoff S.

Mutat Res. 2015 Mar;773:9-15.

44.

Histone variants and epigenetics.

Henikoff S, Smith MM.

Cold Spring Harb Perspect Biol. 2015 Jan 5;7(1):a019364. doi: 10.1101/cshperspect.a019364. Review.

45.

Asymmetric nucleosomes flank promoters in the budding yeast genome.

Ramachandran S, Zentner GE, Henikoff S.

Genome Res. 2015 Mar;25(3):381-90. doi: 10.1101/gr.182618.114. Epub 2014 Dec 9.

46.

Transcribing through the nucleosome.

Teves SS, Weber CM, Henikoff S.

Trends Biochem Sci. 2014 Dec;39(12):577-86. Review.

PMID:
25455758
47.

5-Aza-CdR delivers a gene body blow.

Kasinathan S, Henikoff S.

Cancer Cell. 2014 Oct 13;26(4):449-51. doi: 10.1016/j.ccell.2014.09.004.

48.

Cell type-specific affinity purification of nuclei for chromatin profiling in whole animals.

Steiner FA, Henikoff S.

Methods Mol Biol. 2015;1228:3-14. doi: 10.1007/978-1-4939-1680-1_1.

PMID:
25311117
49.

High-resolution digital profiling of the epigenome.

Zentner GE, Henikoff S.

Nat Rev Genet. 2014 Dec;15(12):814-27. doi: 10.1038/nrg3798. Epub 2014 Oct 9. Review.

PMID:
25297728
50.

Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects.

Drinnenberg IA, deYoung D, Henikoff S, Malik HS.

Elife. 2014 Sep 23;3. doi: 10.7554/eLife.03676.

Supplemental Content

Loading ...
Support Center