Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 36

1.

Structural and ligand binding analyses of the periplasmic sensor domain of RsbU in Chlamydia trachomatis support a role in TCA cycle regulation.

Soules KR, Dmitriev A, LaBrie SD, Dimond ZE, May BH, Johnson DK, Zhang Y, Battaile KP, Lovell S, Hefty PS.

Mol Microbiol. 2019 Oct 21. doi: 10.1111/mmi.14401. [Epub ahead of print]

PMID:
31637787
2.

Chromosomal Recombination Targets in Chlamydia Interspecies Lateral Gene Transfer.

Suchland RJ, Carrell SJ, Wang Y, Hybiske K, Kim DB, Dimond ZE, Hefty PS, Rockey DD.

J Bacteriol. 2019 Nov 5;201(23). pii: e00365-19. doi: 10.1128/JB.00365-19. Print 2019 Dec 1.

PMID:
31501285
3.

Development of Transposon Mutagenesis for Chlamydia muridarum.

Wang Y, LaBrie SD, Carrell SJ, Suchland RJ, Dimond ZE, Kwong F, Rockey DD, Hefty PS, Hybiske K.

J Bacteriol. 2019 Nov 5;201(23). pii: e00366-19. doi: 10.1128/JB.00366-19. Print 2019 Dec 1.

PMID:
31501283
4.

Transposon Mutagenesis in Chlamydia trachomatis Identifies CT339 as a ComEC Homolog Important for DNA Uptake and Lateral Gene Transfer.

LaBrie SD, Dimond ZE, Harrison KS, Baid S, Wickstrum J, Suchland RJ, Hefty PS.

MBio. 2019 Aug 6;10(4). pii: e01343-19. doi: 10.1128/mBio.01343-19.

5.

The Loss of Expression of a Single Type 3 Effector (CT622) Strongly Reduces Chlamydia trachomatis Infectivity and Growth.

Cossé MM, Barta ML, Fisher DJ, Oesterlin LK, Niragire B, Perrinet S, Millot GA, Hefty PS, Subtil A.

Front Cell Infect Microbiol. 2018 May 15;8:145. doi: 10.3389/fcimb.2018.00145. eCollection 2018.

6.

Chlamydia trachomatis-containing vacuole serves as deubiquitination platform to stabilize Mcl-1 and to interfere with host defense.

Fischer A, Harrison KS, Ramirez Y, Auer D, Chowdhury SR, Prusty BK, Sauer F, Dimond Z, Kisker C, Hefty PS, Rudel T.

Elife. 2017 Mar 28;6. pii: e21465. doi: 10.7554/eLife.21465.

7.

Interrogating Genes That Mediate Chlamydia trachomatis Survival in Cell Culture Using Conditional Mutants and Recombination.

Brothwell JA, Muramatsu MK, Toh E, Rockey DD, Putman TE, Barta ML, Hefty PS, Suchland RJ, Nelson DE.

J Bacteriol. 2016 Jul 13;198(15):2131-9. doi: 10.1128/JB.00161-16. Print 2016 Aug 1.

8.

Computational modeling of TC0583 as a putative component of the Chlamydia muridarum V-type ATP synthase complex and assessment of its protective capabilities as a vaccine antigen.

Tifrea DF, Barta ML, Pal S, Hefty PS, de la Maza LM.

Microbes Infect. 2016 Apr;18(4):245-53. doi: 10.1016/j.micinf.2015.12.002. Epub 2015 Dec 17.

PMID:
26706820
9.

Hypothetical protein CT398 (CdsZ) interacts with σ(54) (RpoN)-holoenzyme and the type III secretion export apparatus in Chlamydia trachomatis.

Barta ML, Battaile KP, Lovell S, Hefty PS.

Protein Sci. 2015 Oct;24(10):1617-32. doi: 10.1002/pro.2746. Epub 2015 Aug 6.

10.

Chlamydia trachomatis protein CT009 is a structural and functional homolog to the key morphogenesis component RodZ and interacts with division septal plane localized MreB.

Kemege KE, Hickey JM, Barta ML, Wickstrum J, Balwalli N, Lovell S, Battaile KP, Hefty PS.

Mol Microbiol. 2015 Feb;95(3):365-82. doi: 10.1111/mmi.12855. Epub 2014 Dec 8.

11.

Structural and biochemical characterization of Chlamydia trachomatis hypothetical protein CT263 supports that menaquinone synthesis occurs through the futalosine pathway.

Barta ML, Thomas K, Yuan H, Lovell S, Battaile KP, Schramm VL, Hefty PS.

J Biol Chem. 2014 Nov 14;289(46):32214-29. doi: 10.1074/jbc.M114.594325. Epub 2014 Sep 24.

12.

Lipopolysaccharide-binding alkylpolyamine DS-96 inhibits Chlamydia trachomatis infection by blocking attachment and entry.

Osaka I, Hefty PS.

Antimicrob Agents Chemother. 2014 Jun;58(6):3245-54. doi: 10.1128/AAC.02391-14. Epub 2014 Mar 24.

13.

Atypical response regulator ChxR from Chlamydia trachomatis is structurally poised for DNA binding.

Barta ML, Hickey JM, Anbanandam A, Dyer K, Hammel M, Hefty PS.

PLoS One. 2014 Mar 19;9(3):e91760. doi: 10.1371/journal.pone.0091760. eCollection 2014.

14.

Chlamydia trachomatis CT771 (nudH) is an asymmetric Ap4A hydrolase.

Barta ML, Lovell S, Sinclair AN, Battaile KP, Hefty PS.

Biochemistry. 2014 Jan 14;53(1):214-24. doi: 10.1021/bi401473e. Epub 2013 Dec 31.

15.

Structure of CT584 from Chlamydia trachomatis refined to 3.05 Å resolution.

Barta ML, Hickey J, Kemege KE, Lovell S, Battaile KP, Hefty PS.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Nov;69(Pt 11):1196-201. doi: 10.1107/S1744309113027371. Epub 2013 Oct 26.

16.

Conditional gene expression in Chlamydia trachomatis using the tet system.

Wickstrum J, Sammons LR, Restivo KN, Hefty PS.

PLoS One. 2013 Oct 7;8(10):e76743. doi: 10.1371/journal.pone.0076743. eCollection 2013.

17.

Small-molecule inhibitor of the Shigella flexneri master virulence regulator VirF.

Koppolu V, Osaka I, Skredenske JM, Kettle B, Hefty PS, Li J, Egan SM.

Infect Immun. 2013 Nov;81(11):4220-31. doi: 10.1128/IAI.00919-13. Epub 2013 Sep 3.

18.

Simple resazurin-based microplate assay for measuring Chlamydia infections.

Osaka I, Hefty PS.

Antimicrob Agents Chemother. 2013 Jun;57(6):2838-40. doi: 10.1128/AAC.00056-13. Epub 2013 Mar 18.

19.

An automated image-based method for rapid analysis of Chlamydia infection as a tool for screening antichlamydial agents.

Osaka I, Hills JM, Kieweg SL, Shinogle HE, Moore DS, Hefty PS.

Antimicrob Agents Chemother. 2012 Aug;56(8):4184-8. doi: 10.1128/AAC.00427-12. Epub 2012 May 21.

20.

Ab initio structural modeling of and experimental validation for Chlamydia trachomatis protein CT296 reveal structural similarity to Fe(II) 2-oxoglutarate-dependent enzymes.

Kemege KE, Hickey JM, Lovell S, Battaile KP, Zhang Y, Hefty PS.

J Bacteriol. 2011 Dec;193(23):6517-28. doi: 10.1128/JB.05488-11. Epub 2011 Sep 30.

21.

The atypical response regulator protein ChxR has structural characteristics and dimer interface interactions that are unique within the OmpR/PhoB subfamily.

Hickey JM, Lovell S, Battaile KP, Hu L, Middaugh CR, Hefty PS.

J Biol Chem. 2011 Sep 16;286(37):32606-16. doi: 10.1074/jbc.M111.220574. Epub 2011 Jul 20.

22.

The atypical OmpR/PhoB response regulator ChxR from Chlamydia trachomatis forms homodimers in vivo and binds a direct repeat of nucleotide sequences.

Hickey JM, Weldon L, Hefty PS.

J Bacteriol. 2011 Jan;193(2):389-98. doi: 10.1128/JB.00833-10. Epub 2010 Nov 5.

23.

Biophysical characterization of Chlamydia trachomatis CT584 supports its potential role as a type III secretion needle tip protein.

Markham AP, Jaafar ZA, Kemege KE, Middaugh CR, Hefty PS.

Biochemistry. 2009 Nov 3;48(43):10353-61. doi: 10.1021/bi901200y.

24.

Expression, purification, crystallization and preliminary X-ray analysis of the DNA-binding domain of a Chlamydia trachomatis OmpR/PhoB-subfamily response regulator homolog, ChxR.

Hickey JM, Hefty PS, Lamb AL.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 Aug 1;65(Pt 8):791-4. doi: 10.1107/S1744309109025184. Epub 2009 Jul 25.

25.

Chlamydia pneumoniae encodes a functional aromatic amino acid hydroxylase.

Abromaitis S, Hefty PS, Stephens RS.

FEMS Immunol Med Microbiol. 2009 Mar;55(2):196-205. doi: 10.1111/j.1574-695X.2008.00511.x. Epub 2009 Jan 9.

26.

Chlamydial type III secretion system is encoded on ten operons preceded by sigma 70-like promoter elements.

Hefty PS, Stephens RS.

J Bacteriol. 2007 Jan;189(1):198-206. Epub 2006 Oct 20.

27.

ChxR is a transcriptional activator in Chlamydia.

Koo IC, Walthers D, Hefty PS, Kenney LJ, Stephens RS.

Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):750-5. Epub 2006 Jan 9.

28.

Core of the partner switching signalling mechanism is conserved in the obligate intracellular pathogen Chlamydia trachomatis.

Hua L, Hefty PS, Lee YJ, Lee YM, Stephens RS, Price CW.

Mol Microbiol. 2006 Jan;59(2):623-36.

29.

Lysine-dependent multipoint binding of the Borrelia burgdorferi virulence factor outer surface protein E to the C terminus of factor H.

Alitalo A, Meri T, Chen T, Lankinen H, Cheng ZZ, Jokiranta TS, Seppälä IJ, Lahdenne P, Hefty PS, Akins DR, Meri S.

J Immunol. 2004 May 15;172(10):6195-201.

30.

Global analysis of Borrelia burgdorferi genes regulated by mammalian host-specific signals.

Brooks CS, Hefty PS, Jolliff SE, Akins DR.

Infect Immun. 2003 Jun;71(6):3371-83.

31.

OspE-related, OspF-related, and Elp lipoproteins are immunogenic in baboons experimentally infected with Borrelia burgdorferi and in human lyme disease patients.

Hefty PS, Brooks CS, Jett AM, White GL, Wikel SK, Kennedy RC, Akins DR.

J Clin Microbiol. 2002 Nov;40(11):4256-65.

32.

Complement inhibitor factor H binding to Lyme disease spirochetes is mediated by inducible expression of multiple plasmid-encoded outer surface protein E paralogs.

Alitalo A, Meri T, Lankinen H, Seppälä I, Lahdenne P, Hefty PS, Akins D, Meri S.

J Immunol. 2002 Oct 1;169(7):3847-53.

34.

Regulation of OspE-related, OspF-related, and Elp lipoproteins of Borrelia burgdorferi strain 297 by mammalian host-specific signals.

Hefty PS, Jolliff SE, Caimano MJ, Wikel SK, Radolf JD, Akins DR.

Infect Immun. 2001 Jun;69(6):3618-27.

35.

Fetal immunization of baboons induces a fetal-specific antibody response.

Watts AM, Stanley JR, Shearer MH, Hefty PS, Kennedy RC.

Nat Med. 1999 Apr;5(4):427-30.

PMID:
10202933
36.

Immunoglobulin variable regions as idiotype vaccines.

Hefty PS, Kennedy RC.

Infect Dis Clin North Am. 1999 Mar;13(1):27-37, vi. Review.

PMID:
10198790

Supplemental Content

Loading ...
Support Center