Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 58

1.

Structure, activity and function of a singing-CPG interneuron controlling cricket.

Jacob PF, Hedwig B.

J Neurosci. 2018 Nov 5. pii: 1109-18. doi: 10.1523/JNEUROSCI.1109-18.2018. [Epub ahead of print]

PMID:
30396914
2.

Dendritic Ca2+ dynamics and multimodal processing in a cricket antennal interneuron.

Bayley TG, Hedwig B.

J Neurophysiol. 2018 Sep 1;120(3):910-919. doi: 10.1152/jn.00663.2017. Epub 2018 May 9.

3.

Substrate texture affects female cricket walking response to male calling song.

Sarmiento-Ponce EJ, Sutcliffe MPF, Hedwig B.

R Soc Open Sci. 2018 Mar 7;5(3):172334. doi: 10.1098/rsos.172334. eCollection 2018 Mar.

4.

Vestigial singing behaviour persists after the evolutionary loss of song in crickets.

Schneider WT, Rutz C, Hedwig B, Bailey NW.

Biol Lett. 2018 Feb;14(2). pii: 20170654. doi: 10.1098/rsbl.2017.0654.

PMID:
29445043
5.

Surface electrodes record and label brain neurons in insects.

Kostarakos K, Hedwig B.

J Neurophysiol. 2017 Nov 1;118(5):2884-2889. doi: 10.1152/jn.00490.2017. Epub 2017 Sep 13.

6.

Song pattern recognition in crickets based on a delay-line and coincidence-detector mechanism.

Hedwig B, Sarmiento-Ponce EJ.

Proc Biol Sci. 2017 May 31;284(1855). pii: 20170745. doi: 10.1098/rspb.2017.0745.

7.

Editorial: Coding Properties in Invertebrate Sensory Systems.

Garm A, Hedwig BG, Anton S.

Front Physiol. 2017 Jan 10;7:688. doi: 10.3389/fphys.2016.00688. eCollection 2016. No abstract available.

8.
9.
10.

Acoustic signalling for mate attraction in crickets: Abdominal ganglia control the timing of the calling song pattern.

Jacob PF, Hedwig B.

Behav Brain Res. 2016 Aug 1;309:51-66. doi: 10.1016/j.bbr.2016.04.025. Epub 2016 Apr 22.

11.

Sequential Filtering Processes Shape Feature Detection in Crickets: A Framework for Song Pattern Recognition.

Hedwig BG.

Front Physiol. 2016 Feb 25;7:46. doi: 10.3389/fphys.2016.00046. eCollection 2016. Review.

12.

Gating of Acoustic Transducer Channels Is Shaped by Biomechanical Filter Processes.

Hummel J, Schöneich S, Kössl M, Scherberich J, Hedwig B, Prinz S, Nowotny M.

J Neurosci. 2016 Feb 24;36(8):2377-82. doi: 10.1523/JNEUROSCI.3948-15.2016.

13.

El grillo è buon cantore: for Franz Huber on the occasion of his 90th birthday.

Hedwig B.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2016 Mar;202(3):159-62. doi: 10.1007/s00359-016-1074-3. Epub 2016 Feb 15. No abstract available.

PMID:
26879666
14.

Evolution of a Communication System by Sensory Exploitation of Startle Behavior.

Ter Hofstede HM, Schöneich S, Robillard T, Hedwig B.

Curr Biol. 2015 Dec 21;25(24):3245-52. doi: 10.1016/j.cub.2015.10.064. Epub 2015 Dec 10.

15.

An auditory feature detection circuit for sound pattern recognition.

Schöneich S, Kostarakos K, Hedwig B.

Sci Adv. 2015 Sep 11;1(8):e1500325. doi: 10.1126/sciadv.1500325. eCollection 2015 Sep.

16.

Impact of cercal air currents on singing motor pattern generation in the cricket (Gryllus bimaculatus DeGeer).

Jacob PF, Hedwig B.

J Neurophysiol. 2015 Nov;114(5):2649-60. doi: 10.1152/jn.00669.2015. Epub 2015 Sep 2.

17.

Imaging fictive locomotor patterns in larval Drosophila.

Pulver SR, Bayley TG, Taylor AL, Berni J, Bate M, Hedwig B.

J Neurophysiol. 2015 Nov;114(5):2564-77. doi: 10.1152/jn.00731.2015. Epub 2015 Aug 26.

18.

Pattern recognition in field crickets: concepts and neural evidence.

Kostarakos K, Hedwig B.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2015 Jan;201(1):73-85. doi: 10.1007/s00359-014-0949-4. Epub 2014 Oct 28. Review.

PMID:
25348550
19.

Corollary discharge inhibition of wind-sensitive cercal giant interneurons in the singing field cricket.

Schöneich S, Hedwig B.

J Neurophysiol. 2015 Jan 1;113(1):390-9. doi: 10.1152/jn.00520.2014. Epub 2014 Oct 15.

20.

Phase shifts in binaural stimuli provide directional cues for sound localisation in the field cricket Gryllus bimaculatus.

Seagraves KM, Hedwig B.

J Exp Biol. 2014 Jul 1;217(Pt 13):2390-8. doi: 10.1242/jeb.101402. Epub 2014 Apr 15.

21.

Cellular basis for singing motor pattern generation in the field cricket (Gryllus bimaculatus DeGeer).

Schöneich S, Hedwig B.

Brain Behav. 2012 Nov;2(6):707-25. doi: 10.1002/brb3.89. Epub 2012 Sep 4.

22.

Descending brain neurons in the cricket Gryllus bimaculatus (de Geer): auditory responses and impact on walking.

Zorović M, Hedwig B.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2013 Jan;199(1):25-34. doi: 10.1007/s00359-012-0765-7. Epub 2012 Oct 27.

PMID:
23104703
23.

Substrate-borne vibratory communication during courtship in Drosophila melanogaster.

Fabre CC, Hedwig B, Conduit G, Lawrence PA, Goodwin SF, Casal J.

Curr Biol. 2012 Nov 20;22(22):2180-5. doi: 10.1016/j.cub.2012.09.042. Epub 2012 Oct 25.

24.

Calling song recognition in female crickets: temporal tuning of identified brain neurons matches behavior.

Kostarakos K, Hedwig B.

J Neurosci. 2012 Jul 11;32(28):9601-12. doi: 10.1523/JNEUROSCI.1170-12.2012.

25.

Tonic signaling from O₂ sensors sets neural circuit activity and behavioral state.

Busch KE, Laurent P, Soltesz Z, Murphy RJ, Faivre O, Hedwig B, Thomas M, Smith HL, de Bono M.

Nat Neurosci. 2012 Mar 4;15(4):581-91. doi: 10.1038/nn.3061.

26.

Neural basis of singing in crickets: central pattern generation in abdominal ganglia.

Schöneich S, Hedwig B.

Naturwissenschaften. 2011 Dec;98(12):1069-73. doi: 10.1007/s00114-011-0857-1. Epub 2011 Oct 30.

PMID:
22038326
27.

Processing of species-specific auditory patterns in the cricket brain by ascending, local, and descending neurons during standing and walking.

Zorović M, Hedwig B.

J Neurophysiol. 2011 May;105(5):2181-94. doi: 10.1152/jn.00416.2010. Epub 2011 Feb 23.

28.

Hyperacute directional hearing and phonotactic steering in the cricket (Gryllus bimaculatus deGeer).

Schöneich S, Hedwig B.

PLoS One. 2010 Dec 8;5(12):e15141. doi: 10.1371/journal.pone.0015141.

29.

Kinematics of phonotactic steering in the walking cricket Gryllus bimaculatus (de Geer).

Witney AG, Hedwig B.

J Exp Biol. 2011 Jan 1;214(Pt 1):69-79. doi: 10.1242/jeb.044800.

30.

Primary afferent depolarization and frequency processing in auditory afferents.

Baden T, Hedwig B.

J Neurosci. 2010 Nov 3;30(44):14862-9. doi: 10.1523/JNEUROSCI.2734-10.2010.

31.

Dynamics of free intracellular Ca2+ during synaptic and spike activity of cricket tibial motoneurons.

Baden T, Hedwig B.

Eur J Neurosci. 2009 Apr;29(7):1357-68. doi: 10.1111/j.1460-9568.2009.06694.x. Epub 2009 Mar 20.

PMID:
19309317
32.

Front leg movements and tibial motoneurons underlying auditory steering in the cricket (Gryllus bimaculatus deGeer).

Baden T, Hedwig B.

J Exp Biol. 2008 Jul;211(Pt 13):2123-33. doi: 10.1242/jeb.019125.

33.
34.

New insights into corollary discharges mediated by identified neural pathways.

Poulet JF, Hedwig B.

Trends Neurosci. 2007 Jan;30(1):14-21. Epub 2006 Nov 29. Review.

PMID:
17137642
35.

Pulses, patterns and paths: neurobiology of acoustic behaviour in crickets.

Hedwig B.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006 Jul;192(7):677-89. Epub 2006 Mar 8. Review.

PMID:
16523340
36.

The cellular basis of a corollary discharge.

Poulet JF, Hedwig B.

Science. 2006 Jan 27;311(5760):518-22.

37.

Auditory orientation in crickets: pattern recognition controls reactive steering.

Poulet JF, Hedwig B.

Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15665-9. Epub 2005 Oct 14.

38.
39.

Complex auditory behaviour emerges from simple reactive steering.

Hedwig B, Poulet JF.

Nature. 2004 Aug 12;430(7001):781-5.

PMID:
15306810
40.

Temporal pattern recognition based on instantaneous spike rate coding in a simple auditory system.

Nabatiyan A, Poulet JF, de Polavieja GG, Hedwig B.

J Neurophysiol. 2003 Oct;90(4):2484-93.

41.

Corollary discharge inhibition of ascending auditory neurons in the stridulating cricket.

Poulet JF, Hedwig B.

J Neurosci. 2003 Jun 1;23(11):4717-25. Erratum in: J Neurosci. 2003 Jul 9;23(14):6161-2.

42.
43.

A corollary discharge maintains auditory sensitivity during sound production.

Poulet JF, Hedwig B.

Nature. 2002 Aug 22;418(6900):872-6.

PMID:
12192409
44.
45.
46.

A highly sensitive opto-electronic system for the measurement of movements.

Hedwig B.

J Neurosci Methods. 2000 Jul 31;100(1-2):165-71.

PMID:
11040380
47.
48.
49.
50.

Cholinergic activation of stridulatory behaviour in the grasshopper Omocestus viridulus (L.)

Heinrich R, Hedwig B, Elsner N.

J Exp Biol. 1997;200(Pt 9):1327-37.

Supplemental Content

Loading ...
Support Center