Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 42

1.

Quantitative assessment of cortical somatosensory digit representations after median and ulnar nerve injury in rats.

Hulsey DR, Mian TM, Darrow MJ, Hays SA.

Exp Brain Res. 2019 Jul 4. doi: 10.1007/s00221-019-05593-0. [Epub ahead of print]

PMID:
31273391
2.

Norepinephrine and serotonin are required for vagus nerve stimulation directed cortical plasticity.

Hulsey DR, Shedd CM, Sarker SF, Kilgard MP, Hays SA.

Exp Neurol. 2019 Jun 7;320:112975. doi: 10.1016/j.expneurol.2019.112975. [Epub ahead of print]

PMID:
31181199
3.

Vagus nerve stimulation reverses the extinction impairments in a model of PTSD with prolonged and repeated trauma.

Souza RR, Robertson NM, Pruitt DT, Gonzales PA, Hays SA, Rennaker RL, Kilgard MP, McIntyre CK.

Stress. 2019 Jul;22(4):509-520. doi: 10.1080/10253890.2019.1602604. Epub 2019 Apr 23.

PMID:
31010369
4.

Targeted Vagus Nerve Stimulation for Rehabilitation After Stroke.

Engineer ND, Kimberley TJ, Prudente CN, Dawson J, Tarver WB, Hays SA.

Front Neurosci. 2019 Mar 29;13:280. doi: 10.3389/fnins.2019.00280. eCollection 2019. Review.

5.

A suite of automated tools to quantify hand and wrist motor function after cervical spinal cord injury.

Grasse KM, Hays SA, Rahebi KC, Warren VS, Garcia EA, Wigginton JG, Kilgard MP, Rennaker RL 2nd.

J Neuroeng Rehabil. 2019 Apr 11;16(1):48. doi: 10.1186/s12984-019-0518-8.

6.

Protocol for Construction of Rat Nerve Stimulation Cuff Electrodes.

Rios MU, Bucksot JE, Rahebi KC, Engineer CT, Kilgard MP, Hays SA.

Methods Protoc. 2019 Mar;2(1). pii: 19. doi: 10.3390/mps2010019. Epub 2019 Feb 15.

7.

Vagus Nerve Stimulation Rate and Duration Determine whether Sensory Pairing Produces Neural Plasticity.

Buell EP, Borland MS, Loerwald KW, Chandler C, Hays SA, Engineer CT, Kilgard MP.

Neuroscience. 2019 May 15;406:290-299. doi: 10.1016/j.neuroscience.2019.03.019. Epub 2019 Mar 21.

PMID:
30904665
8.

ReStore: A wireless peripheral nerve stimulation system.

Sivaji V, Grasse DW, Hays SA, Bucksot JE, Saini R, Kilgard MP, Rennaker RL 2nd.

J Neurosci Methods. 2019 May 15;320:26-36. doi: 10.1016/j.jneumeth.2019.02.010. Epub 2019 Mar 5.

PMID:
30849436
9.

Vagus nerve stimulation intensity influences motor cortex plasticity.

Morrison RA, Hulsey DR, Adcock KS, Rennaker RL 2nd, Kilgard MP, Hays SA.

Brain Stimul. 2019 Mar - Apr;12(2):256-262. doi: 10.1016/j.brs.2018.10.017. Epub 2018 Nov 3.

PMID:
30409712
10.

Vagus nerve stimulation promotes generalization of conditioned fear extinction and reduces anxiety in rats.

Noble LJ, Meruva VB, Hays SA, Rennaker RL, Kilgard MP, McIntyre CK.

Brain Stimul. 2019 Jan - Feb;12(1):9-18. doi: 10.1016/j.brs.2018.09.013. Epub 2018 Sep 21.

PMID:
30287193
11.

Varying Stimulation Parameters to Improve Cortical Plasticity Generated by VNS-tone Pairing.

Loerwald KW, Buell EP, Borland MS, Rennaker RL 2nd, Hays SA, Kilgard MP.

Neuroscience. 2018 Sep 15;388:239-247. doi: 10.1016/j.neuroscience.2018.07.038. Epub 2018 Jul 29.

PMID:
30063940
12.

Cortical map plasticity as a function of vagus nerve stimulation rate.

Buell EP, Loerwald KW, Engineer CT, Borland MS, Buell JM, Kelly CA, Khan II, Hays SA, Kilgard MP.

Brain Stimul. 2018 Nov - Dec;11(6):1218-1224. doi: 10.1016/j.brs.2018.07.045. Epub 2018 Jul 18.

PMID:
30037658
13.

Closed-loop neuromodulation restores network connectivity and motor control after spinal cord injury.

Ganzer PD, Darrow MJ, Meyers EC, Solorzano BR, Ruiz AD, Robertson NM, Adcock KS, James JT, Jeong HS, Becker AM, Goldberg MP, Pruitt DT, Hays SA, Kilgard MP, Rennaker RL 2nd.

Elife. 2018 Mar 13;7. pii: e32058. doi: 10.7554/eLife.32058.

14.

The M-Maze task: An automated method for studying fear memory in rats exposed to protracted aversive conditioning.

Souza RR, Robertson NM, Pruitt DT, Noble L, Meyers EC, Gonzales PA, Bleker NP, Carey HL, Hays SA, Kilgard MP, McIntyre CK, Rennaker RL.

J Neurosci Methods. 2018 Mar 15;298:54-65. doi: 10.1016/j.jneumeth.2018.02.004. Epub 2018 Feb 13.

PMID:
29452180
15.

Vagus Nerve Stimulation Enhances Stable Plasticity and Generalization of Stroke Recovery.

Meyers EC, Solorzano BR, James J, Ganzer PD, Lai ES, Rennaker RL 2nd, Kilgard MP, Hays SA.

Stroke. 2018 Mar;49(3):710-717. doi: 10.1161/STROKEAHA.117.019202. Epub 2018 Jan 25.

16.

The interaction of pulse width and current intensity on the extent of cortical plasticity evoked by vagus nerve stimulation.

Loerwald KW, Borland MS, Rennaker RL 2nd, Hays SA, Kilgard MP.

Brain Stimul. 2018 Mar - Apr;11(2):271-277. doi: 10.1016/j.brs.2017.11.007. Epub 2017 Nov 15.

17.

Vagus nerve stimulation as a potential adjuvant to behavioral therapy for autism and other neurodevelopmental disorders.

Engineer CT, Hays SA, Kilgard MP.

J Neurodev Disord. 2017 Jul 4;9:20. doi: 10.1186/s11689-017-9203-z. eCollection 2017. Review.

18.

Traumatic Brain Injury Occludes Training-Dependent Cortical Reorganization in the Contralesional Hemisphere.

Pruitt DT, Danaphongse TT, Schmid AN, Morrison RA, Kilgard MP, Rennaker RL 2nd, Hays SA.

J Neurotrauma. 2017 Sep;34(17):2495-2503. doi: 10.1089/neu.2016.4796. Epub 2017 Jul 19.

19.

APP Causes Hyperexcitability in Fragile X Mice.

Westmark CJ, Chuang SC, Hays SA, Filon MJ, Ray BC, Westmark PR, Gibson JR, Huber KM, Wong RK.

Front Mol Neurosci. 2016 Dec 15;9:147. doi: 10.3389/fnmol.2016.00147. eCollection 2016.

20.

Parametric characterization of neural activity in the locus coeruleus in response to vagus nerve stimulation.

Hulsey DR, Riley JR, Loerwald KW, Rennaker RL 2nd, Kilgard MP, Hays SA.

Exp Neurol. 2017 Mar;289:21-30. doi: 10.1016/j.expneurol.2016.12.005. Epub 2016 Dec 14.

21.

Forelimb training drives transient map reorganization in ipsilateral motor cortex.

Pruitt DT, Schmid AN, Danaphongse TT, Flanagan KE, Morrison RA, Kilgard MP, Rennaker RL 2nd, Hays SA.

Behav Brain Res. 2016 Oct 15;313:10-16. doi: 10.1016/j.bbr.2016.07.005. Epub 2016 Jul 5.

22.

Vagus nerve stimulation during rehabilitative training enhances recovery of forelimb function after ischemic stroke in aged rats.

Hays SA, Ruiz A, Bethea T, Khodaparast N, Carmel JB, Rennaker RL 2nd, Kilgard MP.

Neurobiol Aging. 2016 Jul;43:111-8. doi: 10.1016/j.neurobiolaging.2016.03.030. Epub 2016 Apr 7.

23.

Selective Disruption of Metabotropic Glutamate Receptor 5-Homer Interactions Mimics Phenotypes of Fragile X Syndrome in Mice.

Guo W, Molinaro G, Collins KA, Hays SA, Paylor R, Worley PF, Szumlinski KK, Huber KM.

J Neurosci. 2016 Feb 17;36(7):2131-47. doi: 10.1523/JNEUROSCI.2921-15.2016.

24.

Reorganization of Motor Cortex by Vagus Nerve Stimulation Requires Cholinergic Innervation.

Hulsey DR, Hays SA, Khodaparast N, Ruiz A, Das P, Rennaker RL 2nd, Kilgard MP.

Brain Stimul. 2016 Mar-Apr;9(2):174-81. doi: 10.1016/j.brs.2015.12.007. Epub 2016 Jan 8.

25.

Enhancing Rehabilitative Therapies with Vagus Nerve Stimulation.

Hays SA.

Neurotherapeutics. 2016 Apr;13(2):382-94. doi: 10.1007/s13311-015-0417-z. Review.

26.

Vagus Nerve Stimulation During Rehabilitative Training Improves Forelimb Recovery After Chronic Ischemic Stroke in Rats.

Khodaparast N, Kilgard MP, Casavant R, Ruiz A, Qureshi I, Ganzer PD, Rennaker RL 2nd, Hays SA.

Neurorehabil Neural Repair. 2016 Aug;30(7):676-84. doi: 10.1177/1545968315616494. Epub 2015 Nov 4.

27.

A Within-Animal Comparison of Skilled Forelimb Assessments in Rats.

Sloan AM, Fink MK, Rodriguez AJ, Lovitz AM, Khodaparast N, Rennaker RL, Hays SA.

PLoS One. 2015 Oct 27;10(10):e0141254. doi: 10.1371/journal.pone.0141254. eCollection 2015.

28.

Vagus Nerve Stimulation Delivered with Motor Training Enhances Recovery of Function after Traumatic Brain Injury.

Pruitt DT, Schmid AN, Kim LJ, Abe CM, Trieu JL, Choua C, Hays SA, Kilgard MP, Rennaker RL.

J Neurotrauma. 2016 May 1;33(9):871-9. doi: 10.1089/neu.2015.3972. Epub 2015 Aug 5.

29.

Vagus nerve stimulation during rehabilitative training improves functional recovery after intracerebral hemorrhage.

Hays SA, Khodaparast N, Hulsey DR, Ruiz A, Sloan AM, Rennaker RL 2nd, Kilgard MP.

Stroke. 2014 Oct;45(10):3097-100. doi: 10.1161/STROKEAHA.114.006654. Epub 2014 Aug 21.

30.

The timing and amount of vagus nerve stimulation during rehabilitative training affect poststroke recovery of forelimb strength.

Hays SA, Khodaparast N, Ruiz A, Sloan AM, Hulsey DR, Rennaker RL 2nd, Kilgard MP.

Neuroreport. 2014 Jun 18;25(9):676-82. doi: 10.1097/WNR.0000000000000154.

31.

Vagus nerve stimulation delivered during motor rehabilitation improves recovery in a rat model of stroke.

Khodaparast N, Hays SA, Sloan AM, Fayyaz T, Hulsey DR, Rennaker RL 2nd, Kilgard MP.

Neurorehabil Neural Repair. 2014 Sep;28(7):698-706. doi: 10.1177/1545968314521006. Epub 2014 Feb 18.

32.

Targeting plasticity with vagus nerve stimulation to treat neurological disease.

Hays SA, Rennaker RL, Kilgard MP.

Prog Brain Res. 2013;207:275-99. doi: 10.1016/B978-0-444-63327-9.00010-2. Review.

33.

Vagus nerve stimulation during rehabilitative training improves forelimb strength following ischemic stroke.

Khodaparast N, Hays SA, Sloan AM, Hulsey DR, Ruiz A, Pantoja M, Rennaker RL 2nd, Kilgard MP.

Neurobiol Dis. 2013 Dec;60:80-8. doi: 10.1016/j.nbd.2013.08.002. Epub 2013 Aug 15.

PMID:
23954448
34.

A target cell-specific role for presynaptic Fmr1 in regulating glutamate release onto neocortical fast-spiking inhibitory neurons.

Patel AB, Hays SA, Bureau I, Huber KM, Gibson JR.

J Neurosci. 2013 Feb 6;33(6):2593-604. doi: 10.1523/JNEUROSCI.2447-12.2013.

35.

The bradykinesia assessment task: an automated method to measure forelimb speed in rodents.

Hays SA, Khodaparast N, Sloan AM, Fayyaz T, Hulsey DR, Ruiz AD, Pantoja M, Kilgard MP, Rennaker RL 2nd.

J Neurosci Methods. 2013 Mar 30;214(1):52-61. doi: 10.1016/j.jneumeth.2012.12.022. Epub 2013 Jan 23.

PMID:
23353133
36.

The isometric pull task: a novel automated method for quantifying forelimb force generation in rats.

Hays SA, Khodaparast N, Sloan AM, Hulsey DR, Pantoja M, Ruiz AD, Kilgard MP, Rennaker RL 2nd.

J Neurosci Methods. 2013 Jan 30;212(2):329-37. doi: 10.1016/j.jneumeth.2012.11.007. Epub 2012 Nov 23.

PMID:
23183016
37.

Disrupted Homer scaffolds mediate abnormal mGluR5 function in a mouse model of fragile X syndrome.

Ronesi JA, Collins KA, Hays SA, Tsai NP, Guo W, Birnbaum SG, Hu JH, Worley PF, Gibson JR, Huber KM.

Nat Neurosci. 2012 Jan 22;15(3):431-40, S1. doi: 10.1038/nn.3033.

38.

Altered neocortical rhythmic activity states in Fmr1 KO mice are due to enhanced mGluR5 signaling and involve changes in excitatory circuitry.

Hays SA, Huber KM, Gibson JR.

J Neurosci. 2011 Oct 5;31(40):14223-34. doi: 10.1523/JNEUROSCI.3157-11.2011.

39.

B cells and platelets harbor prion infectivity in the blood of deer infected with chronic wasting disease.

Mathiason CK, Hayes-Klug J, Hays SA, Powers J, Osborn DA, Dahmes SJ, Miller KV, Warren RJ, Mason GL, Telling GC, Young AJ, Hoover EA.

J Virol. 2010 May;84(10):5097-107. doi: 10.1128/JVI.02169-09. Epub 2010 Mar 10.

40.

Infectious prions in pre-clinical deer and transmission of chronic wasting disease solely by environmental exposure.

Mathiason CK, Hays SA, Powers J, Hayes-Klug J, Langenberg J, Dahmes SJ, Osborn DA, Miller KV, Warren RJ, Mason GL, Hoover EA.

PLoS One. 2009 Jun 16;4(6):e5916. doi: 10.1371/journal.pone.0005916.

41.

Imbalance of neocortical excitation and inhibition and altered UP states reflect network hyperexcitability in the mouse model of fragile X syndrome.

Gibson JR, Bartley AF, Hays SA, Huber KM.

J Neurophysiol. 2008 Nov;100(5):2615-26. doi: 10.1152/jn.90752.2008. Epub 2008 Sep 10.

42.

Infectious prions in the saliva and blood of deer with chronic wasting disease.

Mathiason CK, Powers JG, Dahmes SJ, Osborn DA, Miller KV, Warren RJ, Mason GL, Hays SA, Hayes-Klug J, Seelig DM, Wild MA, Wolfe LL, Spraker TR, Miller MW, Sigurdson CJ, Telling GC, Hoover EA.

Science. 2006 Oct 6;314(5796):133-6.

Supplemental Content

Support Center