Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 83

1.

Overcoming Catalyst Residue Inhibition of the Functionalization of Single-Walled Carbon Nanotubes via the Billups-Birch Reduction.

Zhang KS, Pham D, Lawal O, Ghosh S, Gangoli VS, Smalley P, Kennedy K, Brinson BE, Billups WE, Hauge RH, Adams WW, Barronβ AR.

ACS Appl Mater Interfaces. 2017 Nov 1;9(43):37972-37980. doi: 10.1021/acsami.7b12857. Epub 2017 Oct 23.

PMID:
29058877
2.

Atomic H-Induced Mo2C Hybrid as an Active and Stable Bifunctional Electrocatalyst.

Fan X, Liu Y, Peng Z, Zhang Z, Zhou H, Zhang X, Yakobson BI, Goddard WA 3rd, Guo X, Hauge RH, Tour JM.

ACS Nano. 2017 Jan 24;11(1):384-394. doi: 10.1021/acsnano.6b06089. Epub 2017 Jan 3.

PMID:
27989107
3.

Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes.

He X, Gao W, Xie L, Li B, Zhang Q, Lei S, Robinson JM, Hároz EH, Doorn SK, Wang W, Vajtai R, Ajayan PM, Adams WW, Hauge RH, Kono J.

Nat Nanotechnol. 2016 Jul;11(7):633-8. doi: 10.1038/nnano.2016.44. Epub 2016 Apr 4.

4.

Growing Carbon Nanotubes from Both Sides of Graphene.

Jiang J, Li Y, Gao C, Kim ND, Fan X, Wang G, Peng Z, Hauge RH, Tour JM.

ACS Appl Mater Interfaces. 2016 Mar 23;8(11):7356-62. doi: 10.1021/acsami.5b12254. Epub 2016 Mar 8.

PMID:
26905859
5.

Growth and Transfer of Seamless 3D Graphene-Nanotube Hybrids.

Kim ND, Li Y, Wang G, Fan X, Jiang J, Li L, Ji Y, Ruan G, Hauge RH, Tour JM.

Nano Lett. 2016 Feb 10;16(2):1287-92. doi: 10.1021/acs.nanolett.5b04627. Epub 2016 Jan 26.

PMID:
26789079
6.

Figure of Merit for Carbon Nanotube Photothermoelectric Detectors.

Erikson KJ, He X, Talin AA, Mills B, Hauge RH, Iguchi T, Fujimura N, Kawano Y, Kono J, Léonard F.

ACS Nano. 2015 Dec 22;9(12):11618-27. doi: 10.1021/acsnano.5b06160. Epub 2015 Nov 3.

PMID:
26512738
7.

Structure-Dependent Thermal Defunctionalization of Single-Walled Carbon Nanotubes.

Ghosh S, Wei F, Bachilo SM, Hauge RH, Billups WE, Weisman RB.

ACS Nano. 2015 Jun 23;9(6):6324-32. doi: 10.1021/acsnano.5b01846. Epub 2015 Jun 9.

PMID:
26027688
8.

Generation of terahertz radiation by optical excitation of aligned carbon nanotubes.

Titova LV, Pint CL, Zhang Q, Hauge RH, Kono J, Hegmann FA.

Nano Lett. 2015 May 13;15(5):3267-72. doi: 10.1021/acs.nanolett.5b00494. Epub 2015 Apr 20.

PMID:
25879274
9.

Three-dimensional thin film for lithium-ion batteries and supercapacitors.

Yang Y, Peng Z, Wang G, Ruan G, Fan X, Li L, Fei H, Hauge RH, Tour JM.

ACS Nano. 2014 Jul 22;8(7):7279-87.

PMID:
24930958
10.

Carbon nanotube terahertz detector.

He X, Fujimura N, Lloyd JM, Erickson KJ, Talin AA, Zhang Q, Gao W, Jiang Q, Kawano Y, Hauge RH, Léonard F, Kono J.

Nano Lett. 2014 Jul 9;14(7):3953-8. doi: 10.1021/nl5012678. Epub 2014 Jun 4.

PMID:
24875576
11.

Rebar graphene.

Yan Z, Peng Z, Casillas G, Lin J, Xiang C, Zhou H, Yang Y, Ruan G, Raji AR, Samuel EL, Hauge RH, Yacaman MJ, Tour JM.

ACS Nano. 2014 May 27;8(5):5061-8. doi: 10.1021/nn501132n. Epub 2014 Apr 7.

12.

Single walled carbon nanotube growth and chirality dependence on catalyst composition.

Orbaek AW, Owens AC, Crouse CC, Pint CL, Hauge RH, Barron AR.

Nanoscale. 2013 Oct 21;5(20):9848-59. doi: 10.1039/c3nr03142j.

PMID:
23974219
13.

Photothermoelectric p-n junction photodetector with intrinsic broadband polarimetry based on macroscopic carbon nanotube films.

He X, Wang X, Nanot S, Cong K, Jiang Q, Kane AA, Goldsmith JE, Hauge RH, Léonard F, Kono J.

ACS Nano. 2013 Aug 27;7(8):7271-7. doi: 10.1021/nn402679u. Epub 2013 Jul 5.

PMID:
23808567
14.

Splitting of a vertical multiwalled carbon nanotube carpet to a graphene nanoribbon carpet and its use in supercapacitors.

Zhang C, Peng Z, Lin J, Zhu Y, Ruan G, Hwang CC, Lu W, Hauge RH, Tour JM.

ACS Nano. 2013 Jun 25;7(6):5151-9. doi: 10.1021/nn400750n. Epub 2013 May 20.

PMID:
23672653
15.

Broadband, polarization-sensitive photodetector based on optically-thick films of macroscopically long, dense, and aligned carbon nanotubes.

Nanot S, Cummings AW, Pint CL, Ikeuchi A, Akiho T, Sueoka K, Hauge RH, Léonard F, Kono J.

Sci Rep. 2013;3:1335. doi: 10.1038/srep01335.

16.

Physical removal of metallic carbon nanotubes from nanotube network devices using a thermal and fluidic process.

Ford AC, Shaughnessy M, Wong BM, Kane AA, Kuznetsov OV, Krafcik KL, Billups WE, Hauge RH, Léonard F.

Nanotechnology. 2013 Mar 15;24(10):105202. doi: 10.1088/0957-4484/24/10/105202. Epub 2013 Feb 15.

17.

Fundamental optical processes in armchair carbon nanotubes.

Hároz EH, Duque JG, Tu X, Zheng M, Hight Walker AR, Hauge RH, Doorn SK, Kono J.

Nanoscale. 2013 Feb 21;5(4):1411-39. doi: 10.1039/c2nr32769d.

PMID:
23340668
18.

3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance.

Lin J, Zhang C, Yan Z, Zhu Y, Peng Z, Hauge RH, Natelson D, Tour JM.

Nano Lett. 2013 Jan 9;13(1):72-8. doi: 10.1021/nl3034976. Epub 2012 Dec 27.

PMID:
23237453
19.

A seamless three-dimensional carbon nanotube graphene hybrid material.

Zhu Y, Li L, Zhang C, Casillas G, Sun Z, Yan Z, Ruan G, Peng Z, Raji AR, Kittrell C, Hauge RH, Tour JM.

Nat Commun. 2012;3:1225. doi: 10.1038/ncomms2234.

PMID:
23187625
20.

Optoelectronic properties of single-wall carbon nanotubes.

Nanot S, Hároz EH, Kim JH, Hauge RH, Kono J.

Adv Mater. 2012 Sep 18;24(36):4977-94. doi: 10.1002/adma.201201751. Epub 2012 Aug 22. Review.

PMID:
22911973
21.

Closed-edged graphene nanoribbons from large-diameter collapsed nanotubes.

Zhang C, Bets K, Lee SS, Sun Z, Mirri F, Colvin VL, Yakobson BI, Tour JM, Hauge RH.

ACS Nano. 2012 Jul 24;6(7):6023-32. doi: 10.1021/nn301039v. Epub 2012 Jun 14.

PMID:
22676224
22.

Overcoming the "coffee-stain" effect by compositional Marangoni-flow-assisted drop-drying.

Majumder M, Rendall CS, Eukel JA, Wang JY, Behabtu N, Pint CL, Liu TY, Orbaek AW, Mirri F, Nam J, Barron AR, Hauge RH, Schmidt HK, Pasquali M.

J Phys Chem B. 2012 Jun 7;116(22):6536-42. doi: 10.1021/jp3009628. Epub 2012 May 29.

PMID:
22587569
23.

High Electrocatalytic Activity of Vertically Aligned Single-Walled Carbon Nanotubes towards Sulfide Redox Shuttles.

Hao F, Dong P, Zhang J, Zhang Y, Loya PE, Hauge RH, Li J, Lou J, Lin H.

Sci Rep. 2012;2:368. doi: 10.1038/srep00368. Epub 2012 Apr 16.

24.

Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks.

Ren L, Pint CL, Arikawa T, Takeya K, Kawayama I, Tonouchi M, Hauge RH, Kono J.

Nano Lett. 2012 Feb 8;12(2):787-90. doi: 10.1021/nl203783q. Epub 2012 Jan 30.

PMID:
22268490
25.

Unique origin of colors of armchair carbon nanotubes.

Hároz EH, Duque JG, Lu BY, Nikolaev P, Arepalli S, Hauge RH, Doorn SK, Kono J.

J Am Chem Soc. 2012 Mar 14;134(10):4461-4. doi: 10.1021/ja209333m. Epub 2012 Jan 3.

PMID:
22239488
26.

Towards hybrid superlattices in graphene.

Sun Z, Pint CL, Marcano DC, Zhang C, Yao J, Ruan G, Yan Z, Zhu Y, Hauge RH, Tour JM.

Nat Commun. 2011 Nov 29;2:559. doi: 10.1038/ncomms1577.

PMID:
22127055
27.

Supergrowth of nitrogen-doped single-walled carbon nanotube arrays: active species, dopant characterization, and doped/undoped heterojunctions.

Pint CL, Sun Z, Moghazy S, Xu YQ, Tour JM, Hauge RH.

ACS Nano. 2011 Sep 27;5(9):6925-34. doi: 10.1021/nn201252z. Epub 2011 Aug 12.

PMID:
21819126
28.

Vertically aligned single-walled carbon nanotubes as low-cost and high electrocatalytic counter electrode for dye-sensitized solar cells.

Dong P, Pint CL, Hainey M, Mirri F, Zhan Y, Zhang J, Pasquali M, Hauge RH, Verduzco R, Jiang M, Lin H, Lou J.

ACS Appl Mater Interfaces. 2011 Aug;3(8):3157-61. doi: 10.1021/am200659y. Epub 2011 Aug 3.

PMID:
21770421
29.

Direct imaging of carbon nanotubes spontaneously filled with solvent.

Green MJ, Young CC, Parra-Vasquez AN, Majumder M, Juloori V, Behabtu N, Pint CL, Schmidt J, Kesselman E, Hauge RH, Cohen Y, Talmon Y, Pasquali M.

Chem Commun (Camb). 2011 Jan 28;47(4):1228-30. doi: 10.1039/c0cc03915b. Epub 2010 Nov 23.

PMID:
21103560
30.

Spontaneous dissolution of ultralong single- and multiwalled carbon nanotubes.

Parra-Vasquez AN, Behabtu N, Green MJ, Pint CL, Young CC, Schmidt J, Kesselman E, Goyal A, Ajayan PM, Cohen Y, Talmon Y, Hauge RH, Pasquali M.

ACS Nano. 2010 Jul 27;4(7):3969-78. doi: 10.1021/nn100864v.

PMID:
20593770
31.

Wet catalyst-support films for production of vertically aligned carbon nanotubes.

Alvarez NT, Hamilton CE, Pint CL, Orbaek A, Yao J, Frosinini AL, Barron AR, Tour JM, Hauge RH.

ACS Appl Mater Interfaces. 2010 Jul;2(7):1851-6. doi: 10.1021/am100128m.

PMID:
20540507
32.

Dendrimer-assisted self-assembled monolayer of iron nanoparticles for vertical array carbon nanotube growth.

Alvarez NT, Orbaek A, Barron AR, Tour JM, Hauge RH.

ACS Appl Mater Interfaces. 2010 Jan;2(1):15-8. doi: 10.1021/am900666w.

PMID:
20356214
33.

Enrichment of armchair carbon nanotubes via density gradient ultracentrifugation: Raman spectroscopy evidence.

Hároz EH, Rice WD, Lu BY, Ghosh S, Hauge RH, Weisman RB, Doorn SK, Kono J.

ACS Nano. 2010 Apr 27;4(4):1955-62. doi: 10.1021/nn901908n.

PMID:
20302343
34.

Influence of alumina type on the evolution and activity of alumina-supported Fe catalysts in single-walled carbon nanotube carpet growth.

Amama PB, Pint CL, Kim SM, McJilton L, Eyink KG, Stach EA, Hauge RH, Maruyama B.

ACS Nano. 2010 Feb 23;4(2):895-904. doi: 10.1021/nn901700u.

PMID:
20131855
35.

Dry contact transfer printing of aligned carbon nanotube patterns and characterization of their optical properties for diameter distribution and alignment.

Pint CL, Xu YQ, Moghazy S, Cherukuri T, Alvarez NT, Haroz EH, Mahzooni S, Doorn SK, Kono J, Pasquali M, Hauge RH.

ACS Nano. 2010 Feb 23;4(2):1131-45. doi: 10.1021/nn9013356.

PMID:
20092353
36.

True solutions of single-walled carbon nanotubes for assembly into macroscopic materials.

Davis VA, Parra-Vasquez AN, Green MJ, Rai PK, Behabtu N, Prieto V, Booker RD, Schmidt J, Kesselman E, Zhou W, Fan H, Adams WW, Hauge RH, Fischer JE, Cohen Y, Talmon Y, Smalley RE, Pasquali M.

Nat Nanotechnol. 2009 Dec;4(12):830-4. doi: 10.1038/nnano.2009.302. Epub 2009 Nov 1.

PMID:
19893518
37.

Abrasion as a catalyst deposition technique for carbon nanotube growth.

Alvarez NT, Pint CL, Hauge RH, Tour JM.

J Am Chem Soc. 2009 Oct 21;131(41):15041-8. doi: 10.1021/ja905681a.

PMID:
19764728
38.

Carbon nanotube terahertz polarizer.

Ren L, Pint CL, Booshehri LG, Rice WD, Wang X, Hilton DJ, Takeya K, Kawayama I, Tonouchi M, Hauge RH, Kono J.

Nano Lett. 2009 Jul;9(7):2610-3. doi: 10.1021/nl900815s.

PMID:
19492842
39.

Rapid and scalable reduction of dense surface-supported metal-oxide catalyst with hydrazine vapor.

Pint CL, Kim SM, Stach EA, Hauge RH.

ACS Nano. 2009 Jul 28;3(7):1897-905. doi: 10.1021/nn900225h. Epub 2009 Jun 1.

PMID:
19485412
40.

Templated growth of graphenic materials.

Nicholas NW, Connors LM, Ding F, Yakobson BI, Schmidt HK, Hauge RH.

Nanotechnology. 2009 Jun 17;20(24):245607. doi: 10.1088/0957-4484/20/24/245607. Epub 2009 May 27.

PMID:
19471075
41.

Formation of highly dense aligned ribbons and transparent films of single-walled carbon nanotubes directly from carpets.

Pint CL, Xu YQ, Pasquali M, Hauge RH.

ACS Nano. 2008 Sep 23;2(9):1871-8. doi: 10.1021/nn8003718.

PMID:
19206427
42.

Alignment dynamics of single-walled carbon nanotubes in pulsed ultrahigh magnetic fields.

Shaver J, Parra-Vasquez AN, Hansel S, Portugall O, Mielke CH, von Ortenberg M, Hauge RH, Pasquali M, Kono J.

ACS Nano. 2009 Jan 27;3(1):131-8. doi: 10.1021/nn800519n.

PMID:
19206259
43.

Role of water in super growth of single-walled carbon nanotube carpets.

Amama PB, Pint CL, McJilton L, Kim SM, Stach EA, Murray PT, Hauge RH, Maruyama B.

Nano Lett. 2009 Jan;9(1):44-9. doi: 10.1021/nl801876h.

PMID:
19046079
44.

Selective photochemical functionalization of surfactant-dispersed single wall carbon nanotubes in water.

Alvarez NT, Kittrell C, Schmidt HK, Hauge RH, Engel PS, Tour JM.

J Am Chem Soc. 2008 Oct 29;130(43):14227-33. doi: 10.1021/ja804164y. Epub 2008 Oct 1.

PMID:
18826225
45.

Synthesis of high aspect-ratio carbon nanotube "flying carpets" from nanostructured flake substrates.

Pint CL, Pheasant ST, Pasquali M, Coulter KE, Schmidt HK, Hauge RH.

Nano Lett. 2008 Jul;8(7):1879-83. doi: 10.1021/nl0804295. Epub 2008 Jun 5.

PMID:
18529032
46.

Dispersions of functionalized single-walled carbon nanotubes in strong acids: solubility and rheology.

Rai PK, Parra-Vasquez AN, Chattopadhyay J, Pinnick RA, Liang F, Sadana AK, Hauge RH, Billups WE, Pasquali M.

J Nanosci Nanotechnol. 2007 Oct;7(10):3378-85.

PMID:
18330144
47.

Statistically accurate length measurements of single-walled carbon nanotubes.

Ziegler KJ, Rauwald U, Gu Z, Liang F, Billups WE, Hauge RH, Smalley RE.

J Nanosci Nanotechnol. 2007 Aug;7(8):2917-21.

PMID:
17685318
48.

A highly selective, one-pot purification method for single-walled carbon nanotubes.

Wang Y, Shan H, Hauge RH, Pasquali M, Smalley RE.

J Phys Chem B. 2007 Feb 15;111(6):1249-52. Epub 2007 Jan 24.

PMID:
17249726
49.

Nanoscopically flat open-ended single-walled carbon nanotube substrates for continued growth.

Kim MJ, Haroz E, Wang Y, Shan H, Nicholas N, Kittrell C, Moore VC, Jung Y, Luzzi D, Wheeler R, BensonTolle T, Fan H, Da S, Hwang WF, Wainerdi TJ, Schmidt H, Hauge RH, Smalley RE.

Nano Lett. 2007 Jan;7(1):15-21.

PMID:
17212433
50.

Coherent lattice vibrations in single-walled carbon nanotubes.

Lim YS, Yee KJ, Kim JH, Hároz EH, Shaver J, Kono J, Doorn SK, Hauge RH, Smalley RE.

Nano Lett. 2006 Dec;6(12):2696-700.

PMID:
17163690

Supplemental Content

Loading ...
Support Center