Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 14

1.

Characterizing entanglement of an artificial atom and a cavity cat state with Bell's inequality.

Vlastakis B, Petrenko A, Ofek N, Sun L, Leghtas Z, Sliwa K, Liu Y, Hatridge M, Blumoff J, Frunzio L, Mirrahimi M, Jiang L, Devoret MH, Schoelkopf RJ.

Nat Commun. 2015 Nov 27;6:8970. doi: 10.1038/ncomms9970.

2.

Quantum engineering. Confining the state of light to a quantum manifold by engineered two-photon loss.

Leghtas Z, Touzard S, Pop IM, Kou A, Vlastakis B, Petrenko A, Sliwa KM, Narla A, Shankar S, Hatridge MJ, Reagor M, Frunzio L, Schoelkopf RJ, Mirrahimi M, Devoret MH.

Science. 2015 Feb 20;347(6224):853-7. doi: 10.1126/science.aaa2085.

3.

Non-Poissonian quantum jumps of a fluxonium qubit due to quasiparticle excitations.

Vool U, Pop IM, Sliwa K, Abdo B, Wang C, Brecht T, Gao YY, Shankar S, Hatridge M, Catelani G, Mirrahimi M, Frunzio L, Schoelkopf RJ, Glazman LI, Devoret MH.

Phys Rev Lett. 2014 Dec 12;113(24):247001. Epub 2014 Dec 8.

PMID:
25541795
4.

Tracking photon jumps with repeated quantum non-demolition parity measurements.

Sun L, Petrenko A, Leghtas Z, Vlastakis B, Kirchmair G, Sliwa KM, Narla A, Hatridge M, Shankar S, Blumoff J, Frunzio L, Mirrahimi M, Devoret MH, Schoelkopf RJ.

Nature. 2014 Jul 24;511(7510):444-8. doi: 10.1038/nature13436. Epub 2014 Jul 13.

PMID:
25043007
5.

Josephson directional amplifier for quantum measurement of superconducting circuits.

Abdo B, Sliwa K, Shankar S, Hatridge M, Frunzio L, Schoelkopf R, Devoret M.

Phys Rev Lett. 2014 Apr 25;112(16):167701. Epub 2014 Apr 22.

PMID:
24815669
6.

Conductive shield for ultra-low-field magnetic resonance imaging: Theory and measurements of eddy currents.

Zevenhoven KC, Busch S, Hatridge M, Oisjöen F, Ilmoniemi RJ, Clarke J.

J Appl Phys. 2014 Mar 14;115(10):103902. Epub 2014 Mar 11.

7.

Autonomously stabilized entanglement between two superconducting quantum bits.

Shankar S, Hatridge M, Leghtas Z, Sliwa KM, Narla A, Vool U, Girvin SM, Frunzio L, Mirrahimi M, Devoret MH.

Nature. 2013 Dec 19;504(7480):419-22. doi: 10.1038/nature12802. Epub 2013 Nov 24.

PMID:
24270808
8.

Three-wave mixing with three incoming waves: signal-idler coherent attenuation and gain enhancement in a parametric amplifier.

Schackert F, Roy A, Hatridge M, Devoret MH, Stone AD.

Phys Rev Lett. 2013 Aug 16;111(7):073903. Epub 2013 Aug 16.

PMID:
23992068
9.

Full coherent frequency conversion between two propagating microwave modes.

Abdo B, Sliwa K, Schackert F, Bergeal N, Hatridge M, Frunzio L, Stone AD, Devoret M.

Phys Rev Lett. 2013 Apr 26;110(17):173902. Epub 2013 Apr 26.

PMID:
23679729
10.

Quantum back-action of an individual variable-strength measurement.

Hatridge M, Shankar S, Mirrahimi M, Schackert F, Geerlings K, Brecht T, Sliwa KM, Abdo B, Frunzio L, Girvin SM, Schoelkopf RJ, Devoret MH.

Science. 2013 Jan 11;339(6116):178-81. doi: 10.1126/science.1226897.

11.

Measurements of T(1) -relaxation in ex vivo prostate tissue at 132 μT.

Busch S, Hatridge M, Mößle M, Myers W, Wong T, Mück M, Chew K, Kuchinsky K, Simko J, Clarke J.

Magn Reson Med. 2012 Apr;67(4):1138-45. doi: 10.1002/mrm.24177. Epub 2012 Jan 31.

12.

Calculated signal-to-noise ratio of MRI detected with SQUIDs and Faraday detectors in fields from 10 microT to 1.5 T.

Myers W, Slichter D, Hatridge M, Busch S, Mössle M, McDermott R, Trabesinger A, Clarke J.

J Magn Reson. 2007 Jun;186(2):182-92. Epub 2007 Feb 13.

PMID:
17337220
13.

SQUID-detected magnetic resonance imaging in microtesla fields.

Clarke J, Hatridge M, Mössle M.

Annu Rev Biomed Eng. 2007;9:389-413. Review.

PMID:
17328671
14.

SQUID-detected microtesla MRI in the presence of metal.

Mössle M, Han SI, Myers WR, Lee SK, Kelso N, Hatridge M, Pines A, Clarke J.

J Magn Reson. 2006 Mar;179(1):146-51. Epub 2005 Nov 28.

PMID:
16310385

Supplemental Content

Loading ...
Support Center