Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 48

1.

Extrasynaptic NMDA Receptors on Rod Pathway Amacrine Cells: Molecular Composition, Activation, and Signaling.

Veruki ML, Zhou Y, Castilho Á, Morgans CW, Hartveit E.

J Neurosci. 2019 Jan 23;39(4):627-650. doi: 10.1523/JNEUROSCI.2267-18.2018. Epub 2018 Nov 20.

PMID:
30459218
2.

Electrotonic signal processing in AII amacrine cells: compartmental models and passive membrane properties for a gap junction-coupled retinal neuron.

Zandt BJ, Veruki ML, Hartveit E.

Brain Struct Funct. 2018 Sep;223(7):3383-3410. doi: 10.1007/s00429-018-1696-z. Epub 2018 Jun 14.

PMID:
29948192
3.

AMPA receptors at ribbon synapses in the mammalian retina: kinetic models and molecular identity.

Hartveit E, Zandt BJ, Madsen E, Castilho Á, Mørkve SH, Veruki ML.

Brain Struct Funct. 2018 Mar;223(2):769-804. doi: 10.1007/s00429-017-1520-1. Epub 2017 Sep 21.

PMID:
28936725
4.

Semi-automatic 3D morphological reconstruction of neurons with densely branching morphology: Application to retinal AII amacrine cells imaged with multi-photon excitation microscopy.

Zandt BJ, Losnegård A, Hodneland E, Veruki ML, Lundervold A, Hartveit E.

J Neurosci Methods. 2017 Mar 1;279:101-118. doi: 10.1016/j.jneumeth.2017.01.008. Epub 2017 Jan 20.

PMID:
28115187
5.

AII amacrine cells: quantitative reconstruction and morphometric analysis of electrophysiologically identified cells in live rat retinal slices imaged with multi-photon excitation microscopy.

Zandt BJ, Liu JH, Veruki ML, Hartveit E.

Brain Struct Funct. 2017 Jan;222(1):151-182. doi: 10.1007/s00429-016-1206-0. Epub 2016 Mar 7.

6.

Functional NMDA receptors are expressed by both AII and A17 amacrine cells in the rod pathway of the mammalian retina.

Zhou Y, Tencerová B, Hartveit E, Veruki ML.

J Neurophysiol. 2016 Jan 1;115(1):389-403. doi: 10.1152/jn.00947.2015. Epub 2015 Nov 11.

7.

Diabetic hyperglycemia reduces Ca2+ permeability of extrasynaptic AMPA receptors in AII amacrine cells.

Castilho Á, Madsen E, Ambrósio AF, Veruki ML, Hartveit E.

J Neurophysiol. 2015 Sep;114(3):1545-53. doi: 10.1152/jn.00295.2015. Epub 2015 Jul 8.

8.

Disruption of a neural microcircuit in the rod pathway of the mammalian retina by diabetes mellitus.

Castilho Á, Ambrósio AF, Hartveit E, Veruki ML.

J Neurosci. 2015 Apr 1;35(13):5422-33. doi: 10.1523/JNEUROSCI.5285-14.2015.

9.

Electrical synapses between AII amacrine cells in the retina: Function and modulation.

Hartveit E, Veruki ML.

Brain Res. 2012 Dec 3;1487:160-72. doi: 10.1016/j.brainres.2012.05.060. Epub 2012 Jul 7. Review.

PMID:
22776293
10.

Calcium channel dynamics limit synaptic release in response to prosthetic stimulation with sinusoidal waveforms.

Freeman DK, Jeng JS, Kelly SK, Hartveit E, Fried SI.

J Neural Eng. 2011 Aug;8(4):046005. doi: 10.1088/1741-2560/8/4/046005. Epub 2011 May 31.

11.

Animal cells connected by nanotubes can be electrically coupled through interposed gap-junction channels.

Wang X, Veruki ML, Bukoreshtliev NV, Hartveit E, Gerdes HH.

Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17194-9. doi: 10.1073/pnas.1006785107. Epub 2010 Sep 20.

12.

Transient release kinetics of rod bipolar cells revealed by capacitance measurement of exocytosis from axon terminals in rat retinal slices.

Oltedal L, Hartveit E.

J Physiol. 2010 May 1;588(Pt 9):1469-87. doi: 10.1113/jphysiol.2010.186916. Epub 2010 Mar 8.

13.

Electrical coupling and passive membrane properties of AII amacrine cells.

Veruki ML, Oltedal L, Hartveit E.

J Neurophysiol. 2010 Mar;103(3):1456-66. doi: 10.1152/jn.01105.2009. Epub 2010 Jan 20.

14.

Accurate measurement of junctional conductance between electrically coupled cells with dual whole-cell voltage-clamp under conditions of high series resistance.

Hartveit E, Veruki ML.

J Neurosci Methods. 2010 Mar 15;187(1):13-25. doi: 10.1016/j.jneumeth.2009.12.003. Epub 2010 Jan 14.

PMID:
20074587
15.

Properties of glycine receptors underlying synaptic currents in presynaptic axon terminals of rod bipolar cells in the rat retina.

Mørkve SH, Hartveit E.

J Physiol. 2009 Aug 1;587(Pt 15):3813-30. doi: 10.1113/jphysiol.2009.173583. Epub 2009 Jun 15.

16.

Meclofenamic acid blocks electrical synapses of retinal AII amacrine and on-cone bipolar cells.

Veruki ML, Hartveit E.

J Neurophysiol. 2009 May;101(5):2339-47. doi: 10.1152/jn.00112.2009. Epub 2009 Mar 11.

17.

Passive membrane properties and electrotonic signal processing in retinal rod bipolar cells.

Oltedal L, Veruki ML, Hartveit E.

J Physiol. 2009 Feb 15;587(Pt 4):829-49. doi: 10.1113/jphysiol.2008.165415. Epub 2009 Jan 5.

18.

Electrical synapses between AII amacrine cells: dynamic range and functional consequences of variation in junctional conductance.

Veruki ML, Oltedal L, Hartveit E.

J Neurophysiol. 2008 Dec;100(6):3305-22. doi: 10.1152/jn.90957.2008. Epub 2008 Oct 15.

20.

Spontaneous IPSCs and glycine receptors with slow kinetics in wide-field amacrine cells in the mature rat retina.

Veruki ML, Gill SB, Hartveit E.

J Physiol. 2007 May 15;581(Pt 1):203-19. Epub 2007 Mar 1.

21.

Patch-clamp investigations and compartmental modeling of rod bipolar axon terminals in an in vitro thin-slice preparation of the mammalian retina.

Oltedal L, Mørkve SH, Veruki ML, Hartveit E.

J Neurophysiol. 2007 Feb;97(2):1171-87. Epub 2006 Dec 13.

22.

Activation of a presynaptic glutamate transporter regulates synaptic transmission through electrical signaling.

Veruki ML, Mørkve SH, Hartveit E.

Nat Neurosci. 2006 Nov;9(11):1388-96. Epub 2006 Oct 15.

PMID:
17041592
23.

Functional properties of spontaneous IPSCs and glycine receptors in rod amacrine (AII) cells in the rat retina.

Gill SB, Veruki ML, Hartveit E.

J Physiol. 2006 Sep 15;575(Pt 3):739-59. Epub 2006 Jul 6.

24.
25.

Functional properties of spontaneous EPSCs and non-NMDA receptors in rod amacrine (AII) cells in the rat retina.

Veruki ML, Mørkve SH, Hartveit E.

J Physiol. 2003 Jun 15;549(Pt 3):759-74. Epub 2003 Apr 17.

26.
27.
28.
29.
30.

Roles of N-methyl-D-aspartate receptors in ocular dominance plasticity in developing visual cortex: re-evaluation.

Kasamatsu T, Imamura K, Mataga N, Hartveit E, Heggelund U, Heggelund P.

Neuroscience. 1998 Feb;82(3):687-700.

PMID:
9483528
31.

Functional organization of cone bipolar cells in the rat retina.

Hartveit E.

J Neurophysiol. 1997 Apr;77(4):1716-30.

32.

AII amacrine cells express functional NMDA receptors.

Hartveit E, Veruki ML.

Neuroreport. 1997 Mar 24;8(5):1219-23.

PMID:
9175117
34.

Expression of GABA receptor rho 1 and rho 2 subunits in the retina and brain of the rat.

Enz R, Brandstätter JH, Hartveit E, Wässle H, Bormann J.

Eur J Neurosci. 1995 Jul 1;7(7):1495-501.

PMID:
7551175
35.
36.
37.

Localization and developmental expression of the NMDA receptor subunit NR2A in the mammalian retina.

Hartveit E, Brandstätter JH, Sassoè-Pognetto M, Laurie DJ, Seeburg PH, Wässle H.

J Comp Neurol. 1994 Oct 22;348(4):570-82.

PMID:
7836563
39.

Expression of NMDA and high-affinity kainate receptor subunit mRNAs in the adult rat retina.

Brandstätter JH, Hartveit E, Sassoè-Pognetto M, Wässle H.

Eur J Neurosci. 1994 Jul 1;6(7):1100-12.

PMID:
7952290
40.
41.
42.
43.

The effect of contrast on the visual response of lagged and nonlagged cells in the cat lateral geniculate nucleus.

Hartveit E, Heggelund P.

Vis Neurosci. 1992 Nov;9(5):515-25. Erratum in: Vis Neurosci 1993 Jan-Feb;10(1):191.

PMID:
1450104
44.
45.

Attenuated cells in breast stroma: the missing lymphatic system of the breast.

Hartveit E.

Histopathology. 1990 Jun;16(6):533-43.

PMID:
2376396
46.
47.
48.

Side and survival in breast cancer.

Hartveit F, Tangen M, Hartveit E.

Oncology. 1984;41(3):149-54.

PMID:
6728398

Supplemental Content

Loading ...
Support Center