Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 105

1.

Solvent dynamics play a decisive role in the complex formation of biologically relevant redox proteins.

Adams EM, Lampret O, König B, Happe T, Havenith M.

Phys Chem Chem Phys. 2020 Mar 26. doi: 10.1039/d0cp00267d. [Epub ahead of print]

PMID:
32215444
2.

Shedding Light on Proton and Electron Dynamics in [FeFe] Hydrogenases.

Lorent C, Katz S, Duan J, Kulka CJ, Caserta G, Teutloff C, Yadav S, Apfel UP, Winkler M, Happe T, Horch M, Zebger I.

J Am Chem Soc. 2020 Mar 25;142(12):5493-5497. doi: 10.1021/jacs.9b13075. Epub 2020 Mar 16.

PMID:
32125830
3.

Modelling Photosynthesis with ZnII -Protoporphyrin All-DNA G-Quadruplex/Aptamer Scaffolds.

Luo GF, Biniuri Y, Chen WH, Wang J, Neumann E, Marjault HB, Nechushtai R, Winkler M, Happe T, Willner I.

Angew Chem Int Ed Engl. 2020 Mar 3. doi: 10.1002/anie.202002915. [Epub ahead of print]

PMID:
32125762
4.

Extending electron paramagnetic resonance to nanoliter volume protein single crystals using a self-resonant microhelix.

Sidabras JW, Duan J, Winkler M, Happe T, Hussein R, Zouni A, Suter D, Schnegg A, Lubitz W, Reijerse EJ.

Sci Adv. 2019 Oct 4;5(10):eaay1394. doi: 10.1126/sciadv.aay1394. eCollection 2019 Oct.

5.

Loss of Specific Active-Site Iron Atoms in Oxygen-Exposed [FeFe]-Hydrogenase Determined by Detailed X-ray Structure Analyses.

Esselborn J, Kertess L, Apfel UP, Hofmann E, Happe T.

J Am Chem Soc. 2019 Nov 6;141(44):17721-17728. doi: 10.1021/jacs.9b07808. Epub 2019 Oct 25.

PMID:
31609603
6.

How [FeFe]-Hydrogenase Facilitates Bidirectional Proton Transfer.

Senger M, Eichmann V, Laun K, Duan J, Wittkamp F, Knör G, Apfel UP, Happe T, Winkler M, Heberle J, Stripp ST.

J Am Chem Soc. 2019 Oct 30;141(43):17394-17403. doi: 10.1021/jacs.9b09225. Epub 2019 Oct 15.

7.

Subtle changes of gray matter volume in fibromyalgia reflect chronic musculoskeletal pain rather than disease-specific effects.

Sundermann B, Dehghan Nayyeri M, Pfleiderer B, Stahlberg K, Jünke L, Baie L, Dieckmann R, Liem D, Happe T, Burgmer M.

Eur J Neurosci. 2019 Dec;50(12):3958-3967. doi: 10.1111/ejn.14558. Epub 2019 Sep 12.

PMID:
31448468
8.

Artificial Photosynthesis with Electron Acceptor/Photosensitizer-Aptamer Conjugates.

Luo GF, Biniuri Y, Chen WH, Neumann E, Fadeev M, Marjault HB, Bedi A, Gidron O, Nechushtai R, Stone D, Happe T, Willner I.

Nano Lett. 2019 Sep 11;19(9):6621-6628. doi: 10.1021/acs.nanolett.9b02880. Epub 2019 Aug 15.

PMID:
31407917
9.

The final steps of [FeFe]-hydrogenase maturation.

Lampret O, Esselborn J, Haas R, Rutz A, Booth RL, Kertess L, Wittkamp F, Megarity CF, Armstrong FA, Winkler M, Happe T.

Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):15802-15810. doi: 10.1073/pnas.1908121116. Epub 2019 Jul 23.

10.

Differential Protonation at the Catalytic Six-Iron Cofactor of [FeFe]-Hydrogenases Revealed by 57Fe Nuclear Resonance X-ray Scattering and Quantum Mechanics/Molecular Mechanics Analyses.

Mebs S, Duan J, Wittkamp F, Stripp ST, Happe T, Apfel UP, Winkler M, Haumann M.

Inorg Chem. 2019 Mar 18;58(6):4000-4013. doi: 10.1021/acs.inorgchem.9b00100. Epub 2019 Feb 25.

PMID:
30802044
11.

His-Ligation to the [4Fe-4S] Subcluster Tunes the Catalytic Bias of [FeFe] Hydrogenase.

Rodríguez-Maciá P, Kertess L, Burnik J, Birrell JA, Hofmann E, Lubitz W, Happe T, Rüdiger O.

J Am Chem Soc. 2019 Jan 9;141(1):472-481. doi: 10.1021/jacs.8b11149. Epub 2018 Dec 26.

PMID:
30545220
12.

[FeFe]-hydrogenases from green algae.

Engelbrecht V, Happe T.

Methods Enzymol. 2018;613:203-230. doi: 10.1016/bs.mie.2018.10.004. Epub 2018 Nov 24.

PMID:
30509467
13.

Crystallographic and spectroscopic assignment of the proton transfer pathway in [FeFe]-hydrogenases.

Duan J, Senger M, Esselborn J, Engelbrecht V, Wittkamp F, Apfel UP, Hofmann E, Stripp ST, Happe T, Winkler M.

Nat Commun. 2018 Nov 9;9(1):4726. doi: 10.1038/s41467-018-07140-x.

14.

Preventing the coffee-ring effect and aggregate sedimentation by in situ gelation of monodisperse materials.

Li H, Buesen D, Williams R, Henig J, Stapf S, Mukherjee K, Freier E, Lubitz W, Winkler M, Happe T, Plumeré N.

Chem Sci. 2018 Aug 23;9(39):7596-7605. doi: 10.1039/c8sc03302a. eCollection 2018 Oct 21.

15.

Iron-sulphur cluster biogenesis via the SUF pathway.

Bai Y, Chen T, Happe T, Lu Y, Sawyer A.

Metallomics. 2018 Aug 15;10(8):1038-1052. doi: 10.1039/c8mt00150b. Review.

PMID:
30019043
16.

Spectroscopical Investigations on the Redox Chemistry of [FeFe]-Hydrogenases in the Presence of Carbon Monoxide.

Laun K, Mebs S, Duan J, Wittkamp F, Apfel UP, Happe T, Winkler M, Haumann M, Stripp ST.

Molecules. 2018 Jul 9;23(7). pii: E1669. doi: 10.3390/molecules23071669.

17.

Flavodiiron-Mediated O2 Photoreduction Links H2 Production with CO2 Fixation during the Anaerobic Induction of Photosynthesis.

Burlacot A, Sawyer A, Cuiné S, Auroy-Tarrago P, Blangy S, Happe T, Peltier G.

Plant Physiol. 2018 Aug;177(4):1639-1649. doi: 10.1104/pp.18.00721. Epub 2018 Jul 5.

18.

In memory of Achim Trebst (1929-2017): a pioneer of photosynthesis research.

Bothe H, Happe T, Trebst S, Rögner M.

Photosynth Res. 2018 Sep;137(3):341-359. doi: 10.1007/s11120-018-0516-x. Epub 2018 May 16.

PMID:
29767344
19.

Influence of the [4Fe-4S] cluster coordinating cysteines on active site maturation and catalytic properties of C. reinhardtii [FeFe]-hydrogenase.

Kertess L, Adamska-Venkatesh A, Rodríguez-Maciá P, Rüdiger O, Lubitz W, Happe T.

Chem Sci. 2017 Dec 1;8(12):8127-8137. doi: 10.1039/c7sc03444j. Epub 2017 Oct 9.

20.

Rational redesign of the ferredoxin-NADP+-oxido-reductase/ferredoxin-interaction for photosynthesis-dependent H2-production.

Wiegand K, Winkler M, Rumpel S, Kannchen D, Rexroth S, Hase T, Farès C, Happe T, Lubitz W, Rögner M.

Biochim Biophys Acta Bioenerg. 2018 Apr;1859(4):253-262. doi: 10.1016/j.bbabio.2018.01.006. Epub 2018 Jan 31.

21.

Interplay between CN- Ligands and the Secondary Coordination Sphere of the H-Cluster in [FeFe]-Hydrogenases.

Lampret O, Adamska-Venkatesh A, Konegger H, Wittkamp F, Apfel UP, Reijerse EJ, Lubitz W, Rüdiger O, Happe T, Winkler M.

J Am Chem Soc. 2017 Dec 20;139(50):18222-18230. doi: 10.1021/jacs.7b08735. Epub 2017 Dec 7.

PMID:
29179539
22.

Chalcogenide substitution in the [2Fe] cluster of [FeFe]-hydrogenases conserves high enzymatic activity.

Kertess L, Wittkamp F, Sommer C, Esselborn J, Rüdiger O, Reijerse EJ, Hofmann E, Lubitz W, Winkler M, Happe T, Apfel UP.

Dalton Trans. 2017 Dec 12;46(48):16947-16958. doi: 10.1039/c7dt03785f.

PMID:
29177350
23.

Proton-Coupled Reduction of the Catalytic [4Fe-4S] Cluster in [FeFe]-Hydrogenases.

Senger M, Laun K, Wittkamp F, Duan J, Haumann M, Happe T, Winkler M, Apfel UP, Stripp ST.

Angew Chem Int Ed Engl. 2017 Dec 22;56(52):16503-16506. doi: 10.1002/anie.201709910. Epub 2017 Nov 30.

PMID:
29072356
24.

Hydrogen and oxygen trapping at the H-cluster of [FeFe]-hydrogenase revealed by site-selective spectroscopy and QM/MM calculations.

Mebs S, Kositzki R, Duan J, Kertess L, Senger M, Wittkamp F, Apfel UP, Happe T, Stripp ST, Winkler M, Haumann M.

Biochim Biophys Acta Bioenerg. 2018 Jan;1859(1):28-41. doi: 10.1016/j.bbabio.2017.09.003. Epub 2017 Sep 15.

25.

Protonation/reduction dynamics at the [4Fe-4S] cluster of the hydrogen-forming cofactor in [FeFe]-hydrogenases.

Senger M, Mebs S, Duan J, Shulenina O, Laun K, Kertess L, Wittkamp F, Apfel UP, Happe T, Winkler M, Haumann M, Stripp ST.

Phys Chem Chem Phys. 2018 Jan 31;20(5):3128-3140. doi: 10.1039/c7cp04757f.

PMID:
28884175
26.

Bridging Hydride at Reduced H-Cluster Species in [FeFe]-Hydrogenases Revealed by Infrared Spectroscopy, Isotope Editing, and Quantum Chemistry.

Mebs S, Senger M, Duan J, Wittkamp F, Apfel UP, Happe T, Winkler M, Stripp ST, Haumann M.

J Am Chem Soc. 2017 Sep 6;139(35):12157-12160. doi: 10.1021/jacs.7b07548. Epub 2017 Aug 25.

PMID:
28825810
27.

Accumulating the hydride state in the catalytic cycle of [FeFe]-hydrogenases.

Winkler M, Senger M, Duan J, Esselborn J, Wittkamp F, Hofmann E, Apfel UP, Stripp ST, Happe T.

Nat Commun. 2017 Jul 19;8:16115. doi: 10.1038/ncomms16115.

28.

The structurally unique photosynthetic Chlorella variabilis NC64A hydrogenase does not interact with plant-type ferredoxins.

Engelbrecht V, Rodríguez-Maciá P, Esselborn J, Sawyer A, Hemschemeier A, Rüdiger O, Lubitz W, Winkler M, Happe T.

Biochim Biophys Acta Bioenerg. 2017 Sep;1858(9):771-778. doi: 10.1016/j.bbabio.2017.06.004. Epub 2017 Jun 21.

29.

Association of Ferredoxin:NADP+ oxidoreductase with the photosynthetic apparatus modulates electron transfer in Chlamydomonas reinhardtii.

Mosebach L, Heilmann C, Mutoh R, Gäbelein P, Steinbeck J, Happe T, Ikegami T, Hanke G, Kurisu G, Hippler M.

Photosynth Res. 2017 Dec;134(3):291-306. doi: 10.1007/s11120-017-0408-5. Epub 2017 Jun 7.

30.

Transfer of photosynthetic NADP+/NADPH recycling activity to a porous metal oxide for highly specific, electrochemically-driven organic synthesis.

Siritanaratkul B, Megarity CF, Roberts TG, Samuels TOM, Winkler M, Warner JH, Happe T, Armstrong FA.

Chem Sci. 2017 Jun 1;8(6):4579-4586. doi: 10.1039/c7sc00850c. Epub 2017 May 5.

31.

Vibrational spectroscopy reveals the initial steps of biological hydrogen evolution.

Katz S, Noth J, Horch M, Shafaat HS, Happe T, Hildebrandt P, Zebger I.

Chem Sci. 2016 Nov 1;7(11):6746-6752. doi: 10.1039/c6sc01098a. Epub 2016 Jul 11.

32.

Frequency and potential dependence of reversible electrocatalytic hydrogen interconversion by [FeFe]-hydrogenases.

Pandey K, Islam ST, Happe T, Armstrong FA.

Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):3843-3848. doi: 10.1073/pnas.1619961114. Epub 2017 Mar 27.

33.

Compartmentalisation of [FeFe]-hydrogenase maturation in Chlamydomonas reinhardtii.

Sawyer A, Bai Y, Lu Y, Hemschemeier A, Happe T.

Plant J. 2017 Jun;90(6):1134-1143. doi: 10.1111/tpj.13535. Epub 2017 Apr 26.

34.

Sunlight-Dependent Hydrogen Production by Photosensitizer/Hydrogenase Systems.

Adam D, Bösche L, Castañeda-Losada L, Winkler M, Apfel UP, Happe T.

ChemSusChem. 2017 Mar 9;10(5):894-902. doi: 10.1002/cssc.201601523. Epub 2017 Feb 9.

PMID:
27976835
35.

Electrochemical Investigations of the Mechanism of Assembly of the Active-Site H-Cluster of [FeFe]-Hydrogenases.

Megarity CF, Esselborn J, Hexter SV, Wittkamp F, Apfel UP, Happe T, Armstrong FA.

J Am Chem Soc. 2016 Nov 23;138(46):15227-15233. Epub 2016 Nov 14.

PMID:
27776209
36.

[FeFe]-Hydrogenase with Chalcogenide Substitutions at the H-Cluster Maintains Full H2 Evolution Activity.

Noth J, Esselborn J, Güldenhaupt J, Brünje A, Sawyer A, Apfel UP, Gerwert K, Hofmann E, Winkler M, Happe T.

Angew Chem Int Ed Engl. 2016 Jul 11;55(29):8396-400. doi: 10.1002/anie.201511896. Epub 2016 May 23.

PMID:
27214763
37.

A structural view of synthetic cofactor integration into [FeFe]-hydrogenases.

Esselborn J, Muraki N, Klein K, Engelbrecht V, Metzler-Nolte N, Apfel UP, Hofmann E, Kurisu G, Happe T.

Chem Sci. 2016 Feb 1;7(2):959-968. doi: 10.1039/c5sc03397g. Epub 2015 Oct 26.

38.

Lyophilization protects [FeFe]-hydrogenases against O2-induced H-cluster degradation.

Noth J, Kositzki R, Klein K, Winkler M, Haumann M, Happe T.

Sci Rep. 2015 Sep 14;5:13978. doi: 10.1038/srep13978.

39.

A redox hydrogel protects the O2 -sensitive [FeFe]-hydrogenase from Chlamydomonas reinhardtii from oxidative damage.

Oughli AA, Conzuelo F, Winkler M, Happe T, Lubitz W, Schuhmann W, Rüdiger O, Plumeré N.

Angew Chem Int Ed Engl. 2015 Oct 12;54(42):12329-33. doi: 10.1002/anie.201502776. Epub 2015 Jun 12.

PMID:
26073322
40.

How Formaldehyde Inhibits Hydrogen Evolution by [FeFe]-Hydrogenases: Determination by ¹³C ENDOR of Direct Fe-C Coordination and Order of Electron and Proton Transfers.

Bachmeier A, Esselborn J, Hexter SV, Krämer T, Klein K, Happe T, McGrady JE, Myers WK, Armstrong FA.

J Am Chem Soc. 2015 Apr 29;137(16):5381-9. doi: 10.1021/ja513074m. Epub 2015 Apr 14.

PMID:
25871921
41.

Quantum yield measurements of light-induced H₂ generation in a photosystem I-[FeFe]-H₂ase nanoconstruct.

Applegate AM, Lubner CE, Knörzer P, Happe T, Golbeck JH.

Photosynth Res. 2016 Jan;127(1):5-11. doi: 10.1007/s11120-014-0064-y. Epub 2014 Dec 20.

PMID:
25527460
42.

Hydride binding to the active site of [FeFe]-hydrogenase.

Chernev P, Lambertz C, Brünje A, Leidel N, Sigfridsson KG, Kositzki R, Hsieh CH, Yao S, Schiwon R, Driess M, Limberg C, Happe T, Haumann M.

Inorg Chem. 2014 Nov 17;53(22):12164-77. doi: 10.1021/ic502047q. Epub 2014 Nov 4.

PMID:
25369169
43.

New redox states observed in [FeFe] hydrogenases reveal redox coupling within the H-cluster.

Adamska-Venkatesh A, Krawietz D, Siebel J, Weber K, Happe T, Reijerse E, Lubitz W.

J Am Chem Soc. 2014 Aug 13;136(32):11339-46. doi: 10.1021/ja503390c. Epub 2014 Jul 29.

PMID:
25025613
44.

Metalloprotein mimics - old tools in a new light.

Happe T, Hemschemeier A.

Trends Biotechnol. 2014 Apr;32(4):170-6. doi: 10.1016/j.tibtech.2014.02.004. Epub 2014 Mar 11.

PMID:
24630475
45.

Copper response regulator1-dependent and -independent responses of the Chlamydomonas reinhardtii transcriptome to dark anoxia.

Hemschemeier A, Casero D, Liu B, Benning C, Pellegrini M, Happe T, Merchant SS.

Plant Cell. 2013 Sep;25(9):3186-211. doi: 10.1105/tpc.113.115741. Epub 2013 Sep 6.

46.

Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic.

Esselborn J, Lambertz C, Adamska-Venkates A, Simmons T, Berggren G, Noth J, Siebel J, Hemschemeier A, Artero V, Reijerse E, Fontecave M, Lubitz W, Happe T.

Nat Chem Biol. 2013 Oct;9(10):607-609. doi: 10.1038/nchembio.1311. Epub 2013 Aug 11.

47.

Biomimetic assembly and activation of [FeFe]-hydrogenases.

Berggren G, Adamska A, Lambertz C, Simmons TR, Esselborn J, Atta M, Gambarelli S, Mouesca JM, Reijerse E, Lubitz W, Happe T, Artero V, Fontecave M.

Nature. 2013 Jul 4;499(7456):66-69. doi: 10.1038/nature12239. Epub 2013 Jun 26.

48.

Hypoxic survival requires a 2-on-2 hemoglobin in a process involving nitric oxide.

Hemschemeier A, Düner M, Casero D, Merchant SS, Winkler M, Happe T.

Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10854-9. doi: 10.1073/pnas.1302592110. Epub 2013 Jun 10.

49.

Molecular basis of [FeFe]-hydrogenase function: an insight into the complex interplay between protein and catalytic cofactor.

Winkler M, Esselborn J, Happe T.

Biochim Biophys Acta. 2013 Aug-Sep;1827(8-9):974-85. doi: 10.1016/j.bbabio.2013.03.004. Epub 2013 Mar 16.

50.

Pyruvate:ferredoxin oxidoreductase is coupled to light-independent hydrogen production in Chlamydomonas reinhardtii.

Noth J, Krawietz D, Hemschemeier A, Happe T.

J Biol Chem. 2013 Feb 8;288(6):4368-77. doi: 10.1074/jbc.M112.429985. Epub 2012 Dec 20.

Supplemental Content

Support Center