Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 43

1.

Mutations in the nucleotide-binding domain of putative sterol importers Aus1 and Pdr11 selectively affect utilization of exogenous sterol species in yeast.

Papay M, Klein C, Hapala I, Petriskova L, Kuchler K, Valachovic M.

Yeast. 2020 Jan;37(1):5-14. doi: 10.1002/yea.3456. Epub 2019 Dec 23.

PMID:
31830308
2.

Squalene lipotoxicity in a lipid droplet-less yeast mutant is linked to plasma membrane dysfunction.

Csáky Z, Garaiová M, Kodedová M, Valachovič M, Sychrová H, Hapala I.

Yeast. 2020 Jan;37(1):45-62. doi: 10.1002/yea.3454. Epub 2020 Jan 5.

PMID:
31826302
3.

The complete mitochondrial DNA sequence from Kazachstania sinensis reveals a general +1C frameshift mechanism in CTGY codons.

Szabóová D, Hapala I, Sulo P.

FEMS Yeast Res. 2018 May 1;18(3). doi: 10.1093/femsyr/foy028.

PMID:
29528462
4.

Biosynthetic Approaches to Squalene Production: The Case of Yeast.

Valachovič M, Hapala I.

Methods Mol Biol. 2017;1494:95-106.

PMID:
27718188
5.

Squalene is lipotoxic to yeast cells defective in lipid droplet biogenesis.

Valachovic M, Garaiova M, Holic R, Hapala I.

Biochem Biophys Res Commun. 2016 Jan 22;469(4):1123-8. doi: 10.1016/j.bbrc.2015.12.050. Epub 2015 Dec 15.

PMID:
26703208
6.

Erratum to: Baker's Yeast Deficient in Storage Lipid Synthesis Uses cis‑Vaccenic Acid to Reduce Unsaturated Fatty Acid Toxicity.

Sec P, Garaiova M, Gajdos P, Certik M, Griac P, Hapala I, Holic R.

Lipids. 2015 Jul;50(7):631-2. doi: 10.1007/s11745-015-4040-x. No abstract available.

PMID:
26099329
7.

Baker's Yeast Deficient in Storage Lipid Synthesis Uses cis-Vaccenic Acid to Reduce Unsaturated Fatty Acid Toxicity.

Sec P, Garaiova M, Gajdos P, Certik M, Griac P, Hapala I, Holic R.

Lipids. 2015 Jul;50(7):621-30. doi: 10.1007/s11745-015-4022-z. Epub 2015 Apr 24. Erratum in: Lipids. 2015 Jul;50(7):631-2.

PMID:
25908426
8.

Production of squalene by lactose-fermenting yeast Kluyveromyces lactis with reduced squalene epoxidase activity.

Drozdíková E, Garaiová M, Csáky Z, Obernauerová M, Hapala I.

Lett Appl Microbiol. 2015 Jul;61(1):77-84. doi: 10.1111/lam.12425. Epub 2015 May 10.

9.

Squalene epoxidase as a target for manipulation of squalene levels in the yeast Saccharomyces cerevisiae.

Garaiová M, Zambojová V, Simová Z, Griač P, Hapala I.

FEMS Yeast Res. 2014 Mar;14(2):310-23. doi: 10.1111/1567-1364.12107. Epub 2013 Oct 30.

10.

Yeast membranes and cell wall: from basics to applications.

Hapala I, Griač P, Nosek J, Sychrová H, Tomáška L.

Curr Genet. 2013 Nov;59(4):167-9. doi: 10.1007/s00294-013-0408-8. Epub 2013 Sep 22. No abstract available.

PMID:
24057126
11.

The yeast Saccharomyces cerevisiae Pdr16p restricts changes in ergosterol biosynthesis caused by the presence of azole antifungals.

Šimová Z, Poloncová K, Tahotná D, Holič R, Hapala I, Smith AR, White TC, Griač P.

Yeast. 2013 Jun;30(6):229-41. doi: 10.1002/yea.2956. Epub 2013 May 20.

12.

Effect of cellular cholesterol changes on insulin secretion by tumor cell lines.

Bacová Z, Hafko R, Orecná M, Kohút P, Hapala I, Strbák V.

Med Chem. 2012 Jan;8(1):65-71.

PMID:
22420553
13.

Is fat so bad? Modulation of endoplasmic reticulum stress by lipid droplet formation.

Hapala I, Marza E, Ferreira T.

Biol Cell. 2011 Jun;103(6):271-85. doi: 10.1042/BC20100144. Review.

PMID:
21729000
14.

The role of ABC proteins Aus1p and Pdr11p in the uptake of external sterols in yeast: dehydroergosterol fluorescence study.

Kohut P, Wüstner D, Hronska L, Kuchler K, Hapala I, Valachovic M.

Biochem Biophys Res Commun. 2011 Jan 7;404(1):233-8. doi: 10.1016/j.bbrc.2010.11.099. Epub 2010 Nov 24.

PMID:
21110944
15.

Effects of 3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibitor pravastatin on membrane lipids and membrane associated functions of Methanothermobacter thermautotrophicus.

Nováková Z, Blasko J, Hapala I, Smigán P.

Folia Microbiol (Praha). 2010 Jul;55(4):359-62. doi: 10.1007/s12223-010-0058-x. Epub 2010 Aug 3.

PMID:
20680571
16.

Chemogenomic and transcriptome analysis identifies mode of action of the chemosensitizing agent CTBT (7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine).

Batova M, Klobucnikova V, Oblasova Z, Gregan J, Zahradnik P, Hapala I, Subik J, Schüller C.

BMC Genomics. 2010 Mar 4;11:153. doi: 10.1186/1471-2164-11-153.

17.

Effect of lipid particle biogenesis on the subcellular distribution of squalene in the yeast Saccharomyces cerevisiae.

Spanova M, Czabany T, Zellnig G, Leitner E, Hapala I, Daum G.

J Biol Chem. 2010 Feb 26;285(9):6127-33. doi: 10.1074/jbc.M109.074229. Epub 2009 Dec 23.

18.

Tributyltin-resistant Methanothermobacter thermautotrophicus mutant with mutational substitutions in the A1A0-ATP synthase operon.

Nováková Z, Bobálová J, Vidová M, Hapala I, Smigán P.

FEMS Microbiol Lett. 2009 Sep;298(2):255-9. doi: 10.1111/j.1574-6968.2009.01725.x. Epub 2009 Jul 13.

19.

Hypergravity-induced increase in plasma catecholamine and corticosterone levels in telemetrically collected blood of rats during centrifugation.

Petrak J, Mravec B, Jurani M, Baranovska M, Tillinger A, Hapala I, Frollo I, Kvetnanský R.

Ann N Y Acad Sci. 2008 Dec;1148:201-8. doi: 10.1196/annals.1410.060.

PMID:
19120110
20.

Control of lipid accumulation in the yeast Yarrowia lipolytica.

Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, Chardot T, Nicaud JM.

Appl Environ Microbiol. 2008 Dec;74(24):7779-89. doi: 10.1128/AEM.01412-08. Epub 2008 Oct 24.

21.

Chemosensitisation of drug-resistant and drug-sensitive yeast cells to antifungals.

Cernicka J, Kozovska Z, Hnatova M, Valachovic M, Hapala I, Riedl Z, Hajós G, Subik J.

Int J Antimicrob Agents. 2007 Feb;29(2):170-8. Epub 2007 Jan 3.

PMID:
17204400
22.

Characterization of squalene epoxidase of Saccharomyces cerevisiae by applying terbinafine-sensitive variants.

Ruckenstuhl C, Lang S, Poschenel A, Eidenberger A, Baral PK, Kohút P, Hapala I, Gruber K, Turnowsky F.

Antimicrob Agents Chemother. 2007 Jan;51(1):275-84. Epub 2006 Oct 16.

23.

Two mutants selectively resistant to polyenes reveal distinct mechanisms of antifungal activity by nystatin and amphotericin B.

Hapala I, Klobucníková V, Mazánová K, Kohút P.

Biochem Soc Trans. 2005 Nov;33(Pt 5):1206-9.

PMID:
16246082
24.
25.

Molecular mechanism of terbinafine resistance in Saccharomyces cerevisiae.

Leber R, Fuchsbichler S, Klobucníková V, Schweighofer N, Pitters E, Wohlfarter K, Lederer M, Landl K, Ruckenstuhl C, Hapala I, Turnowsky F.

Antimicrob Agents Chemother. 2003 Dec;47(12):3890-900.

26.

Terbinafine resistance in a pleiotropic yeast mutant is caused by a single point mutation in the ERG1 gene.

Klobucníková V, Kohút P, Leber R, Fuchsbichler S, Schweighofer N, Turnowsky F, Hapala I.

Biochem Biophys Res Commun. 2003 Sep 26;309(3):666-71.

PMID:
12963042
27.
28.

Anaerobiosis induces complex changes in sterol esterification pattern in the yeast Saccharomyces cerevisiae.

Valachovic M, Hronská L, Hapala I.

FEMS Microbiol Lett. 2001 Apr 1;197(1):41-5.

29.

Changes in cellular ergosterol distribution in intramitochondrial energy-depleted Saccharomyces cerevisiae cells.

Hunáková A, Daum G, Hapala I.

Folia Microbiol (Praha). 1997;42(3):229-31. No abstract available.

PMID:
9378414
30.

Breaking the barrier: methods for reversible permeabilization of cellular membranes.

Hapala I.

Crit Rev Biotechnol. 1997;17(2):105-22. Review.

PMID:
9192473
31.

Characterization of a non-specific lipid transfer protein associated with the peroxisomal membrane of the yeast, Saccharomyces cerevisiae.

Ceolotto C, Flekl W, Schorsch FJ, Tahotna D, Hapala I, Hrastnik C, Paltauf F, Daum G.

Biochim Biophys Acta. 1996 Nov 13;1285(1):71-8.

32.

Mechanism of sterol uptake in yeast.

Hapala I, Hunáková A.

Folia Microbiol (Praha). 1996;41(1):95-6. No abstract available.

PMID:
9090837
33.
34.

Regulation of membrane cholesterol domains by sterol carrier protein-2.

Hapala I, Kavecansky J, Butko P, Scallen TJ, Joiner CH, Schroeder F.

Biochemistry. 1994 Jun 21;33(24):7682-90.

PMID:
8011635
35.

Specific changes in nucleotide and lipid synthesis are linked to growth defects in intramitochondrial energy-depleted yeast cells.

Hapala I, Hunáková B, Gerzanicová G, Butko P.

Biochim Biophys Acta. 1994 Feb 23;1190(1):40-2.

PMID:
8110819
36.

Mechanistic studies of sterol carrier protein-2 effects on L-cell fibroblast plasma membrane sterol domains.

Woodford JK, Hapala I, Jefferson JR, Knittel JJ, Kavecansky J, Powell D, Scallen TJ, Schroeder F.

Biochim Biophys Acta. 1994 Jan 3;1189(1):52-60.

PMID:
8305459
37.

Two yeast peroxisomal proteins crossreact with an antiserum against human sterol carrier protein 2 (SCP-2).

Tahotna D, Hapala I, Zinser E, Flekl W, Paltauf F, Daum G.

Biochim Biophys Acta. 1993 May 14;1148(1):173-6.

PMID:
8499465
38.

Sterol domains in phospholipid membranes: dehydroergosterol polarization measures molecular sterol transfer.

Butko P, Hapala I, Nemecz G, Schroeder F.

J Biochem Biophys Methods. 1992 Mar;24(1-2):15-37.

PMID:
1560178
39.

Membrane cholesterol dynamics: cholesterol domains and kinetic pools.

Schroeder F, Jefferson JR, Kier AB, Knittel J, Scallen TJ, Wood WG, Hapala I.

Proc Soc Exp Biol Med. 1991 Mar;196(3):235-52. Review.

PMID:
1998001
40.

Intermembrane cholesterol transfer: role of sterol carrier proteins and phosphatidylserine.

Schroeder F, Butko P, Hapala I, Scallen TJ.

Lipids. 1990 Nov;25(11):669-74.

PMID:
2280670
41.

Role of acidic phospholipids in intermembrane sterol transfer.

Hapala I, Butko P, Schroeder F.

Chem Phys Lipids. 1990 Nov;56(1):37-47.

PMID:
2091835
42.

Acidic phospholipids strikingly potentiate sterol carrier protein 2 mediated intermembrane sterol transfer.

Butko P, Hapala I, Scallen TJ, Schroeder F.

Biochemistry. 1990 May 1;29(17):4070-7.

PMID:
2361131
43.

[The incorporation of macromolecules into the germ cells of male mice via electroporation and dimethyl sulfoxide].

Baranov VS, Hapala I, Hrijac P, Kovac L, Boda K.

Tsitol Genet. 1990 May-Jun;24(3):3-7. Russian.

PMID:
2238096

Supplemental Content

Loading ...
Support Center