Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 76

1.

Effects of long-term exposure to elevated temperature on Zea mays endosperm development during grain fill.

Boehlein SK, Liu P, Webster A, Ribeiro C, Suzuki M, Wu S, Guan JC, Stewart JD, Tracy WF, Settles AM, McCarty DR, Koch KE, Hannah LC, Hennen-Bierwagen TA, Myers AM.

Plant J. 2019 Jul;99(1):23-40. doi: 10.1111/tpj.14283. Epub 2019 Mar 19.

PMID:
30746832
2.
3.

Ovary abortion is prevalent in diverse maize inbred lines and is under genetic control.

Gustin JL, Boehlein SK, Shaw JR, Junior W, Settles AM, Webster A, Tracy WF, Hannah LC.

Sci Rep. 2018 Aug 29;8(1):13032. doi: 10.1038/s41598-018-31216-9.

4.

Fundamental differences in starch synthesis in the maize leaf, embryo, ovary and endosperm.

Boehlein SK, Shaw JR, Boehlein TJ, Boehlein EC, Hannah LC.

Plant J. 2018 Nov;96(3):595-606. doi: 10.1111/tpj.14053. Epub 2018 Sep 8. Erratum in: Plant J. 2019 Jul;99(2):389-390.

PMID:
30062763
5.

Functions of maize genes encoding pyruvate phosphate dikinase in developing endosperm.

Lappe RR, Baier JW, Boehlein SK, Huffman R, Lin Q, Wattebled F, Settles AM, Hannah LC, Borisjuk L, Rolletschek H, Stewart JD, Scott MP, Hennen-Bierwagen TA, Myers AM.

Proc Natl Acad Sci U S A. 2018 Jan 2;115(1):E24-E33. doi: 10.1073/pnas.1715668115. Epub 2017 Dec 18.

6.

A brittle-2 transgene increases maize yield by acting in maternal tissues to increase seed number.

Hannah LC, Shaw JR, Clancy MA, Georgelis N, Boehlein SK.

Plant Direct. 2017 Dec 7;1(6):e00029. doi: 10.1002/pld3.29. eCollection 2017 Dec.

7.

Restorer-of-Fertility Mutations Recovered in Transposon-Active Lines of S Male-Sterile Maize.

Gabay-Laughnan S, Settles AM, Hannah LC, Porch TG, Becraft PW, McCarty DR, Koch KE, Zhao L, Kamps TL, Chamusco KC, Chase CD.

G3 (Bethesda). 2018 Jan 4;8(1):291-302. doi: 10.1534/g3.117.300304.

8.

Differential pre-mRNA Splicing Alters the Transcript Diversity of Helitrons Between the Maize Inbred Lines.

Lynch BT, Patrick TL, Moreno JJ, Siebert AE, Klusman KM, Shodja DN, Hannah LC, Lal SK.

G3 (Bethesda). 2015 Jun 12;5(8):1703-11. doi: 10.1534/g3.115.018630.

9.

Enhancing the heat stability and kinetic parameters of the maize endosperm ADP-glucose pyrophosphorylase using iterative saturation mutagenesis.

Boehlein SK, Shaw JR, Stewart JD, Sullivan B, Hannah LC.

Arch Biochem Biophys. 2015 Feb 15;568:28-37. doi: 10.1016/j.abb.2015.01.008. Epub 2015 Jan 16.

PMID:
25600571
10.

The sh2-R allele of the maize shrunken-2 locus was caused by a complex chromosomal rearrangement.

Kramer V, Shaw JR, Senior ML, Hannah LC.

Theor Appl Genet. 2015 Mar;128(3):445-52. doi: 10.1007/s00122-014-2443-3. Epub 2014 Dec 14.

PMID:
25504539
11.

Enhanced heat stability and kinetic parameters of maize endosperm ADPglucose pyrophosphorylase by alteration of phylogenetically identified amino acids.

Boehlein SK, Shaw JR, Georgelis N, Hannah LC.

Arch Biochem Biophys. 2014 Feb 1;543:1-9. doi: 10.1016/j.abb.2013.12.018. Epub 2013 Dec 27.

PMID:
24378757
12.

The potato tuber, maize endosperm and a chimeric maize-potato ADP-glucose pyrophosphorylase exhibit fundamental differences in Pi inhibition.

Boehlein SK, Shaw JR, McCarty DR, Hwang SK, Stewart JD, Hannah LC.

Arch Biochem Biophys. 2013 Sep 15;537(2):210-6. doi: 10.1016/j.abb.2013.07.019. Epub 2013 Jul 29.

PMID:
23906662
13.

Editor's choice: Evaluating the potential for adverse interactions within genetically engineered breeding stacks.

Steiner HY, Halpin C, Jez JM, Kough J, Parrott W, Underhill L, Weber N, Hannah LC.

Plant Physiol. 2013 Apr;161(4):1587-94. doi: 10.1104/pp.112.209817. Epub 2013 Mar 4. No abstract available.

14.

Editor's choice: Crop genome plasticity and its relevance to food and feed safety of genetically engineered breeding stacks.

Weber N, Halpin C, Hannah LC, Jez JM, Kough J, Parrott W.

Plant Physiol. 2012 Dec;160(4):1842-53. doi: 10.1104/pp.112.204271. Epub 2012 Oct 11. Review. No abstract available.

15.

To be or not to be transgenic.

Parrott WA, Jez JM, Hannah LC.

Nat Biotechnol. 2012 Sep;30(9):825-6. doi: 10.1038/nbt.2347. No abstract available.

PMID:
22965047
16.

A shrunken-2 transgene increases maize yield by acting in maternal tissues to increase the frequency of seed development.

Hannah LC, Futch B, Bing J, Shaw JR, Boehlein S, Stewart JD, Beiriger R, Georgelis N, Greene T.

Plant Cell. 2012 Jun;24(6):2352-63. doi: 10.1105/tpc.112.100602. Epub 2012 Jun 29.

17.

Gene capture by Helitron transposons reshuffles the transcriptome of maize.

Barbaglia AM, Klusman KM, Higgins J, Shaw JR, Hannah LC, Lal SK.

Genetics. 2012 Mar;190(3):965-75. doi: 10.1534/genetics.111.136176. Epub 2011 Dec 14.

18.

The ectopic expression of the wheat Puroindoline genes increase germ size and seed oil content in transgenic corn.

Zhang J, Martin JM, Beecher B, Lu C, Hannah LC, Wall ML, Altosaar I, Giroux MJ.

Plant Mol Biol. 2010 Nov;74(4-5):353-65. doi: 10.1007/s11103-010-9679-3. Epub 2010 Aug 20.

19.

Studies of the kinetic mechanism of maize endosperm ADP-glucose pyrophosphorylase uncovered complex regulatory properties.

Boehlein SK, Shaw JR, Stewart JD, Hannah LC.

Plant Physiol. 2010 Feb;152(2):1056-64. doi: 10.1104/pp.109.149450. Epub 2009 Dec 16.

20.

Probing allosteric binding sites of the maize endosperm ADP-glucose pyrophosphorylase.

Boehlein SK, Shaw JR, Hannah LC, Stewart JD.

Plant Physiol. 2010 Jan;152(1):85-95. doi: 10.1104/pp.109.146928. Epub 2009 Nov 4.

21.

Phylogenetic analysis of ADP-glucose pyrophosphorylase subunits reveals a role of subunit interfaces in the allosteric properties of the enzyme.

Georgelis N, Shaw JR, Hannah LC.

Plant Physiol. 2009 Sep;151(1):67-77. doi: 10.1104/pp.109.138933. Epub 2009 Jul 22.

22.

Characterization of an autonomously activated plant ADP-glucose pyrophosphorylase.

Boehlein SK, Shaw JR, Stewart JD, Hannah LC.

Plant Physiol. 2009 Jan;149(1):318-26. doi: 10.1104/pp.108.126862. Epub 2008 Aug 20.

23.

Duplications and functional divergence of ADP-glucose pyrophosphorylase genes in plants.

Georgelis N, Braun EL, Hannah LC.

BMC Evol Biol. 2008 Aug 12;8:232. doi: 10.1186/1471-2148-8-232.

24.

The complexities of starch biosynthesis in cereal endosperms.

Hannah LC, James M.

Curr Opin Biotechnol. 2008 Apr;19(2):160-5. doi: 10.1016/j.copbio.2008.02.013. Epub 2008 Apr 8. Review.

PMID:
18400487
25.

Helitron mediated amplification of cytochrome P450 monooxygenase gene in maize.

Jameson N, Georgelis N, Fouladbash E, Martens S, Hannah LC, Lal S.

Plant Mol Biol. 2008 Jun;67(3):295-304. doi: 10.1007/s11103-008-9318-4.

PMID:
18327644
26.

The Maize Viviparous8 locus, encoding a putative ALTERED MERISTEM PROGRAM1-like peptidase, regulates abscisic acid accumulation and coordinates embryo and endosperm development.

Suzuki M, Latshaw S, Sato Y, Settles AM, Koch KE, Hannah LC, Kojima M, Sakakibara H, McCarty DR.

Plant Physiol. 2008 Mar;146(3):1193-206. doi: 10.1104/pp.107.114108. Epub 2008 Jan 18.

27.

Heat stability and allosteric properties of the maize endosperm ADP-glucose pyrophosphorylase are intimately intertwined.

Boehlein SK, Shaw JR, Stewart JD, Hannah LC.

Plant Physiol. 2008 Jan;146(1):289-99. Epub 2007 Nov 16.

28.
29.

Sequence-indexed mutations in maize using the UniformMu transposon-tagging population.

Settles AM, Holding DR, Tan BC, Latshaw SP, Liu J, Suzuki M, Li L, O'Brien BA, Fajardo DS, Wroclawska E, Tseung CW, Lai J, Hunter CT 3rd, Avigne WT, Baier J, Messing J, Hannah LC, Koch KE, Becraft PW, Larkins BA, McCarty DR.

BMC Genomics. 2007 May 9;8:116.

30.

Robustness of central carbohydrate metabolism in developing maize kernels.

Spielbauer G, Margl L, Hannah LC, Römisch W, Ettenhuber C, Bacher A, Gierl A, Eisenreich W, Genschel U.

Phytochemistry. 2006 Jul;67(14):1460-75. Epub 2006 Jul 3.

PMID:
16815503
31.

Heat stability of maize endosperm ADP-glucose pyrophosphorylase is enhanced by insertion of a cysteine in the N terminus of the small subunit.

Linebarger CR, Boehlein SK, Sewell AK, Shaw J, Hannah LC.

Plant Physiol. 2005 Dec;139(4):1625-34. Epub 2005 Nov 18.

32.

Changes in flux pattern of the central carbohydrate metabolism during kernel development in maize.

Ettenhuber C, Spielbauer G, Margl L, Hannah LC, Gierl A, Bacher A, Genschel U, Eisenreich W.

Phytochemistry. 2005 Nov;66(22):2632-42. Epub 2005 Nov 7.

PMID:
16274711
33.

Plant genomes: massive changes of the maize genome are caused by Helitrons.

Lal SK, Hannah LC.

Heredity (Edinb). 2005 Dec;95(6):421-2. No abstract available.

34.

Steady-state transposon mutagenesis in inbred maize.

McCarty DR, Settles AM, Suzuki M, Tan BC, Latshaw S, Porch T, Robin K, Baier J, Avigne W, Lai J, Messing J, Koch KE, Hannah LC.

Plant J. 2005 Oct;44(1):52-61.

35.

Helitrons contribute to the lack of gene colinearity observed in modern maize inbreds.

Lal SK, Hannah LC.

Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):9993-4. Epub 2005 Jul 11. No abstract available.

36.

Purification and characterization of adenosine diphosphate glucose pyrophosphorylase from maize/potato mosaics.

Boehlein SK, Sewell AK, Cross J, Stewart JD, Hannah LC.

Plant Physiol. 2005 Jul;138(3):1552-62. Epub 2005 Jun 10.

37.

A polymorphic motif in the small subunit of ADP-glucose pyrophosphorylase modulates interactions between the small and large subunits.

Cross JM, Clancy M, Shaw JR, Boehlein SK, Greene TW, Schmidt RR, Okita TW, Hannah LC.

Plant J. 2005 Feb;41(4):501-11.

38.

Both subunits of ADP-glucose pyrophosphorylase are regulatory.

Cross JM, Clancy M, Shaw JR, Greene TW, Schmidt RR, Okita TW, Hannah LC.

Plant Physiol. 2004 May;135(1):137-44. Epub 2004 Apr 30.

39.

Relative turnover numbers of maize endosperm and potato tuber ADP-glucose pyrophosphorylases in the absence and presence of 3-phosphoglyceric acid.

Burger BT, Cross JM, Shaw JR, Caren JR, Greene TW, Okita TW, Hannah LC.

Planta. 2003 Jul;217(3):449-56. Epub 2003 Mar 6.

PMID:
14520572
40.

Seed yield and plant biomass increases in rice are conferred by deregulation of endosperm ADP-glucose pyrophosphorylase.

Smidansky ED, Martin JM, Hannah LC, Fischer AM, Giroux MJ.

Planta. 2003 Feb;216(4):656-64. Epub 2002 Sep 19.

PMID:
12569408
41.

The maize genome contains a helitron insertion.

Lal SK, Giroux MJ, Brendel V, Vallejos CE, Hannah LC.

Plant Cell. 2003 Feb;15(2):381-91.

43.

Maize genes encoding the small subunit of ADP-glucose pyrophosphorylase.

Hannah LC, Shaw JR, Giroux MJ, Reyss A, Prioul JL, Bae JM, Lee JY.

Plant Physiol. 2001 Sep;127(1):173-83.

44.

rgf1, a mutation reducing grain filling in maize through effects on basal endosperm and pedicel development.

Maitz M, Santandrea G, Zhang Z, Lal S, Hannah LC, Salamini F, Thompson RD.

Plant J. 2000 Jul;23(1):29-42.

46.

Maize transposable element Ds is differentially spliced from primary transcripts in endosperm and suspension cells.

Lal SK, Hannah LC.

Biochem Biophys Res Commun. 1999 Aug 11;261(3):798-801.

PMID:
10441504
47.
48.
49.

Phosphorylation of serine-15 of maize leaf sucrose synthase. Occurrence in vivo and possible regulatory significance.

Huber SC, Huber JL, Liao PC, Gage DA, McMichael RW Jr, Chourey PS, Hannah LC, Koch K.

Plant Physiol. 1996 Oct;112(2):793-802.

50.

A single mutation that increases maize seed weight.

Giroux MJ, Shaw J, Barry G, Cobb BG, Greene T, Okita T, Hannah LC.

Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5824-9.

Supplemental Content

Loading ...
Support Center