Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 71

1.

Insights into Kinesin-1 Stepping from Simulations and Tracking of Gold Nanoparticle-Labeled Motors.

Mickolajczyk KJ, Cook ASI, Jevtha JP, Fricks J, Hancock WO.

Biophys J. 2019 Jul 23;117(2):331-345. doi: 10.1016/j.bpj.2019.06.010. Epub 2019 Jun 20.

PMID:
31301807
2.

Kinesin-5 Promotes Microtubule Nucleation and Assembly by Stabilizing a Lattice-Competent Conformation of Tubulin.

Chen GY, Cleary JM, Asenjo AB, Chen Y, Mascaro JA, Arginteanu DFJ, Sosa H, Hancock WO.

Curr Biol. 2019 Jul 22;29(14):2259-2269.e4. doi: 10.1016/j.cub.2019.05.075. Epub 2019 Jul 4.

PMID:
31280993
3.

The Orphan Kinesin PAKRP2 Achieves Processive Motility via a Noncanonical Stepping Mechanism.

Gicking AM, Wang P, Liu C, Mickolajczyk KJ, Guo L, Hancock WO, Qiu W.

Biophys J. 2019 Apr 2;116(7):1270-1281. doi: 10.1016/j.bpj.2019.02.019. Epub 2019 Feb 28.

PMID:
30902363
4.

Motor Dynamics Underlying Cargo Transport by Pairs of Kinesin-1 and Kinesin-3 Motors.

Arpağ G, Norris SR, Mousavi SI, Soppina V, Verhey KJ, Hancock WO, Tüzel E.

Biophys J. 2019 Mar 19;116(6):1115-1126. doi: 10.1016/j.bpj.2019.01.036. Epub 2019 Feb 5.

PMID:
30824116
5.

Load-dependent detachment kinetics plays a key role in bidirectional cargo transport by kinesin and dynein.

Ohashi KG, Han L, Mentley B, Wang J, Fricks J, Hancock WO.

Traffic. 2019 Apr;20(4):284-294. doi: 10.1111/tra.12639.

PMID:
30809891
6.

Direct observation of individual tubulin dimers binding to growing microtubules.

Mickolajczyk KJ, Geyer EA, Kim T, Rice LM, Hancock WO.

Proc Natl Acad Sci U S A. 2019 Apr 9;116(15):7314-7322. doi: 10.1073/pnas.1815823116. Epub 2019 Feb 25.

7.

The S6 gate in regulatory Kv6 subunits restricts heteromeric K+ channel stoichiometry.

Pisupati A, Mickolajczyk KJ, Horton W, van Rossum DB, Anishkin A, Chintapalli SV, Li X, Chu-Luo J, Busey G, Hancock WO, Jegla T.

J Gen Physiol. 2018 Dec 3;150(12):1702-1721. doi: 10.1085/jgp.201812121. Epub 2018 Oct 15.

8.

High-Resolution Single-Molecule Kinesin Assays at kHz Frame Rates.

Mickolajczyk KJ, Hancock WO.

Methods Mol Biol. 2018;1805:123-138. doi: 10.1007/978-1-4939-8556-2_7.

PMID:
29971716
9.

Mitotic kinesins in action: diffusive searching, directional switching, and ensemble coordination.

Gicking AM, Qiu W, Hancock WO.

Mol Biol Cell. 2018 May 15;29(10):1153-1156. doi: 10.1091/mbc.E17-10-0612.

10.

Motor Reattachment Kinetics Play a Dominant Role in Multimotor-Driven Cargo Transport.

Feng Q, Mickolajczyk KJ, Chen GY, Hancock WO.

Biophys J. 2018 Jan 23;114(2):400-409. doi: 10.1016/j.bpj.2017.11.016.

11.

Kinesin Processivity Is Determined by a Kinetic Race from a Vulnerable One-Head-Bound State.

Mickolajczyk KJ, Hancock WO.

Biophys J. 2017 Jun 20;112(12):2615-2623. doi: 10.1016/j.bpj.2017.05.007.

12.

Crystal structure of Zen4 in the apo state reveals a missing conformation of kinesin.

Guan R, Zhang L, Su QP, Mickolajczyk KJ, Chen GY, Hancock WO, Sun Y, Zhao Y, Chen Z.

Nat Commun. 2017 Apr 10;8:14951. doi: 10.1038/ncomms14951.

13.

The axonal transport motor kinesin-2 navigates microtubule obstacles via protofilament switching.

Hoeprich GJ, Mickolajczyk KJ, Nelson SR, Hancock WO, Berger CL.

Traffic. 2017 May;18(5):304-314. doi: 10.1111/tra.12478. Epub 2017 Apr 5.

14.

Eg5 Inhibitors Have Contrasting Effects on Microtubule Stability and Metaphase Spindle Integrity.

Chen GY, Kang YJ, Gayek AS, Youyen W, Tüzel E, Ohi R, Hancock WO.

ACS Chem Biol. 2017 Apr 21;12(4):1038-1046. doi: 10.1021/acschembio.6b01040. Epub 2017 Feb 22.

15.

Interferometric Scattering Microscopy for the Study of Molecular Motors.

Andrecka J, Takagi Y, Mickolajczyk KJ, Lippert LG, Sellers JR, Hancock WO, Goldman YE, Kukura P.

Methods Enzymol. 2016;581:517-539. doi: 10.1016/bs.mie.2016.08.016. Epub 2016 Oct 10.

16.

Nicotinamide is an endogenous agonist for a C. elegans TRPV OSM-9 and OCR-4 channel.

Upadhyay A, Pisupati A, Jegla T, Crook M, Mickolajczyk KJ, Shorey M, Rohan LE, Billings KA, Rolls MM, Hancock WO, Hanna-Rose W.

Nat Commun. 2016 Oct 12;7:13135. doi: 10.1038/ncomms13135.

17.

The Kinesin-5 Chemomechanical Cycle Is Dominated by a Two-heads-bound State.

Chen GY, Mickolajczyk KJ, Hancock WO.

J Biol Chem. 2016 Sep 23;291(39):20283-20294. doi: 10.1074/jbc.M116.730697. Epub 2016 Jul 11.

18.

Engineered kinesin motor proteins amenable to small-molecule inhibition.

Engelke MF, Winding M, Yue Y, Shastry S, Teloni F, Reddy S, Blasius TL, Soppina P, Hancock WO, Gelfand VI, Verhey KJ.

Nat Commun. 2016 Apr 5;7:11159. doi: 10.1038/ncomms11159.

19.

The Kinesin-1 Chemomechanical Cycle: Stepping Toward a Consensus.

Hancock WO.

Biophys J. 2016 Mar 29;110(6):1216-25. doi: 10.1016/j.bpj.2016.02.025. Review.

20.

Kinesin-2 and Apc function at dendrite branch points to resolve microtubule collisions.

Weiner AT, Lanz MC, Goetschius DJ, Hancock WO, Rolls MM.

Cytoskeleton (Hoboken). 2016 Jan;73(1):35-44. doi: 10.1002/cm.21270.

21.

Aging Gracefully: A New Model of Microtubule Growth and Catastrophe.

Hancock WO.

Biophys J. 2015 Dec 15;109(12):2449-2451. doi: 10.1016/j.bpj.2015.10.049. No abstract available.

22.

Kinetics of nucleotide-dependent structural transitions in the kinesin-1 hydrolysis cycle.

Mickolajczyk KJ, Deffenbaugh NC, Arroyo JO, Andrecka J, Kukura P, Hancock WO.

Proc Natl Acad Sci U S A. 2015 Dec 29;112(52):E7186-93. doi: 10.1073/pnas.1517638112. Epub 2015 Dec 16.

23.

Kinesin-5 is a microtubule polymerase.

Chen Y, Hancock WO.

Nat Commun. 2015 Oct 6;6:8160. doi: 10.1038/ncomms9160.

24.

Examining kinesin processivity within a general gating framework.

Andreasson JO, Milic B, Chen GY, Guydosh NR, Hancock WO, Block SM.

Elife. 2015 Apr 22;4. doi: 10.7554/eLife.07403.

25.

The Mechanochemical Cycle of Mammalian Kinesin-2 KIF3A/B under Load.

Andreasson JO, Shastry S, Hancock WO, Block SM.

Curr Biol. 2015 May 4;25(9):1166-75. doi: 10.1016/j.cub.2015.03.013. Epub 2015 Apr 9.

26.

Processivity of the kinesin-2 KIF3A results from rear head gating and not front head gating.

Chen GY, Arginteanu DF, Hancock WO.

J Biol Chem. 2015 Apr 17;290(16):10274-94. doi: 10.1074/jbc.M114.628032. Epub 2015 Feb 5.

27.

Transport by populations of fast and slow kinesins uncovers novel family-dependent motor characteristics important for in vivo function.

Arpağ G, Shastry S, Hancock WO, Tüzel E.

Biophys J. 2014 Oct 21;107(8):1896-1904. doi: 10.1016/j.bpj.2014.09.009. Erratum in: Biophys J. 2014 Dec 16;107(12):3043. Biophys J. 2014 Dec 16;107(12 ):3043.

28.

Mitotic kinesins: a reason to delve into kinesin-12.

Hancock WO.

Curr Biol. 2014 Oct 6;24(19):R968-70. doi: 10.1016/j.cub.2014.09.011.

29.

Molecular counting by photobleaching in protein complexes with many subunits: best practices and application to the cellulose synthesis complex.

Chen Y, Deffenbaugh NC, Anderson CT, Hancock WO.

Mol Biol Cell. 2014 Nov 5;25(22):3630-42. doi: 10.1091/mbc.E14-06-1146. Epub 2014 Sep 17.

30.

Kinesin processivity is gated by phosphate release.

Milic B, Andreasson JO, Hancock WO, Block SM.

Proc Natl Acad Sci U S A. 2014 Sep 30;111(39):14136-40. doi: 10.1073/pnas.1410943111. Epub 2014 Sep 2.

31.

Bidirectional cargo transport: moving beyond tug of war.

Hancock WO.

Nat Rev Mol Cell Biol. 2014 Sep;15(9):615-28. doi: 10.1038/nrm3853. Epub 2014 Aug 16. Review.

32.

Kinesin's neck-linker determines its ability to navigate obstacles on the microtubule surface.

Hoeprich GJ, Thompson AR, McVicker DP, Hancock WO, Berger CL.

Biophys J. 2014 Apr 15;106(8):1691-700. doi: 10.1016/j.bpj.2014.02.034.

33.

An EB1-kinesin complex is sufficient to steer microtubule growth in vitro.

Chen Y, Rolls MM, Hancock WO.

Curr Biol. 2014 Feb 3;24(3):316-21. doi: 10.1016/j.cub.2013.11.024. Epub 2014 Jan 23.

34.

Estimating Velocity for Processive Motor Proteins with Random Detachment.

Hughes J, Shastry S, Hancock WO, Fricks J.

J Agric Biol Environ Stat. 2013 Jun 1;18(2):204-217.

35.

Microtubule asters as templates for nanomaterials assembly.

Verma V, Catchmark JM, Brown NR, Hancock WO.

J Biol Eng. 2012 Dec 27;6(1):23. doi: 10.1186/1754-1611-6-23.

36.

Cytoskeletal organization: whirling to the beat.

Hancock WO.

Curr Biol. 2012 Jun 19;22(12):R493-5. doi: 10.1016/j.cub.2012.04.045.

37.

Kinesins with extended neck linkers: a chemomechanical model for variable-length stepping.

Hughes J, Hancock WO, Fricks J.

Bull Math Biol. 2012 May;74(5):1066-97. doi: 10.1007/s11538-011-9697-6. Epub 2011 Oct 14.

38.

Interhead tension determines processivity across diverse N-terminal kinesins.

Shastry S, Hancock WO.

Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16253-8. doi: 10.1073/pnas.1102628108. Epub 2011 Sep 12.

39.

Engineering tubulin: microtubule functionalization approaches for nanoscale device applications.

Malcos JL, Hancock WO.

Appl Microbiol Biotechnol. 2011 Apr;90(1):1-10. doi: 10.1007/s00253-011-3140-7. Epub 2011 Feb 16. Review.

40.

Monte Carlo analysis of neck linker extension in kinesin molecular motors.

Kutys ML, Fricks J, Hancock WO.

PLoS Comput Biol. 2010 Nov 4;6(11):e1000980. doi: 10.1371/journal.pcbi.1000980.

41.

"Artificial mitotic spindle" generated by dielectrophoresis and protein micropatterning supports bidirectional transport of kinesin-coated beads.

Uppalapati M, Huang YM, Aravamuthan V, Jackson TN, Hancock WO.

Integr Biol (Camb). 2011 Jan;3(1):57-64. doi: 10.1039/c0ib00065e. Epub 2010 Oct 29.

42.

A matrix computational approach to kinesin neck linker extension.

Hughes J, Hancock WO, Fricks J.

J Theor Biol. 2011 Jan 21;269(1):181-94. doi: 10.1016/j.jtbi.2010.10.005. Epub 2010 Oct 14.

PMID:
20951143
43.

Neck linker length determines the degree of processivity in kinesin-1 and kinesin-2 motors.

Shastry S, Hancock WO.

Curr Biol. 2010 May 25;20(10):939-43. doi: 10.1016/j.cub.2010.03.065. Epub 2010 May 13.

45.

Anterograde microtubule transport drives microtubule bending in LLC-PK1 epithelial cells.

Bicek AD, Tüzel E, Demtchouk A, Uppalapati M, Hancock WO, Kroll DM, Odde DJ.

Mol Biol Cell. 2009 Jun;20(12):2943-53. doi: 10.1091/mbc.E08-09-0909. Epub 2009 Apr 29.

46.

Surface-bound casein modulates the adsorption and activity of kinesin on SiO2 surfaces.

Ozeki T, Verma V, Uppalapati M, Suzuki Y, Nakamura M, Catchmark JM, Hancock WO.

Biophys J. 2009 Apr 22;96(8):3305-18. doi: 10.1016/j.bpj.2008.12.3960.

47.

The processivity of kinesin-2 motors suggests diminished front-head gating.

Muthukrishnan G, Zhang Y, Shastry S, Hancock WO.

Curr Biol. 2009 Mar 10;19(5):442-7. doi: 10.1016/j.cub.2009.01.058.

48.

Nanoscale patterning of kinesin motor proteins and its role in guiding microtubule motility.

Verma V, Hancock WO, Catchmark JM.

Biomed Microdevices. 2009 Apr;11(2):313-22. doi: 10.1007/s10544-008-9237-9.

PMID:
18989786
49.

The role of casein in supporting the operation of surface bound kinesin.

Verma V, Hancock WO, Catchmark JM.

J Biol Eng. 2008 Oct 20;2:14. doi: 10.1186/1754-1611-2-14.

50.

Neutravidin micropatterning by deep UV irradiation.

Huang YM, Uppalapati M, Hancock WO, Jackson TN.

Lab Chip. 2008 Oct;8(10):1745-7. doi: 10.1039/b802762e. Epub 2008 Aug 13.

PMID:
18813401

Supplemental Content

Loading ...
Support Center