Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 26

1.

The Matrix Proteins Hasp and Hig Exhibit Segregated Distribution within Synaptic Clefts and Play Distinct Roles in Synaptogenesis.

Nakayama M, Suzuki E, Tsunoda S, Hama C.

J Neurosci. 2016 Jan 13;36(2):590-606. doi: 10.1523/JNEUROSCI.2300-15.2016.

2.

The matrix protein Hikaru genki localizes to cholinergic synaptic clefts and regulates postsynaptic organization in the Drosophila brain.

Nakayama M, Matsushita F, Hama C.

J Neurosci. 2014 Oct 15;34(42):13872-7. doi: 10.1523/JNEUROSCI.1585-14.2014.

3.

Fruitless recruits two antagonistic chromatin factors to establish single-neuron sexual dimorphism.

Ito H, Sato K, Koganezawa M, Ote M, Matsumoto K, Hama C, Yamamoto D.

Cell. 2012 Jun 8;149(6):1327-38. doi: 10.1016/j.cell.2012.04.025.

4.

Modulation of neurotransmitter receptors and synaptic differentiation by proteins containing complement-related domains.

Nakayama M, Hama C.

Neurosci Res. 2011 Feb;69(2):87-92. doi: 10.1016/j.neures.2010.11.006. Epub 2010 Nov 17. Review.

PMID:
21093502
5.

Differentially expressed Drl and Drl-2 play opposing roles in Wnt5 signaling during Drosophila olfactory system development.

Sakurai M, Aoki T, Yoshikawa S, Santschi LA, Saito H, Endo K, Ishikawa K, Kimura K, Ito K, Thomas JB, Hama C.

J Neurosci. 2009 Apr 15;29(15):4972-80. doi: 10.1523/JNEUROSCI.2821-08.2009.

6.

[Notch signal diversifies olfactory receptor neurons and determines their axonal projection pattern in Drosophila melanogaster].

Endo K, Hama C.

Tanpakushitsu Kakusan Koso. 2007 Sep;52(11):1330-6. Review. Japanese. No abstract available.

PMID:
17867287
7.

Notch signal organizes the Drosophila olfactory circuitry by diversifying the sensory neuronal lineages.

Endo K, Aoki T, Yoda Y, Kimura K, Hama C.

Nat Neurosci. 2007 Feb;10(2):153-60. Epub 2007 Jan 14.

PMID:
17220884
8.

Microglial alpha7 nicotinic acetylcholine receptors drive a phospholipase C/IP3 pathway and modulate the cell activation toward a neuroprotective role.

Suzuki T, Hide I, Matsubara A, Hama C, Harada K, Miyano K, Andrä M, Matsubayashi H, Sakai N, Kohsaka S, Inoue K, Nakata Y.

J Neurosci Res. 2006 Jun;83(8):1461-70.

PMID:
16652343
9.

The slender lobes gene, identified by retarded mushroom body development, is required for proper nucleolar organization in Drosophila.

Orihara-Ono M, Suzuki E, Saito M, Yoda Y, Aigaki T, Hama C.

Dev Biol. 2005 May 1;281(1):121-33.

10.

[Guanine nucleotide exchange factors for Rho family GTPases: specific mediators for a variety of signals].

Ishimaru S, Hama C.

Tanpakushitsu Kakusan Koso. 2004 Feb;49(3 Suppl):324-30. Review. Japanese. No abstract available.

PMID:
14976750
11.

Genetic analyses of essential genes in cytological region 61D1-2 to 61F1-2 of Drosophila melanogaster.

Saito M, Awasaki T, Hama C.

Mol Genet Genomics. 2002 Dec;268(4):446-54. Epub 2002 Nov 5.

PMID:
12471442
12.

Synaptic development is controlled in the periactive zones of Drosophila synapses.

Sone M, Suzuki E, Hoshino M, Hou D, Kuromi H, Fukata M, Kuroda S, Kaibuchi K, Nabeshima Y, Hama C.

Development. 2000 Oct;127(19):4157-68.

13.

The Drosophila trio plays an essential role in patterning of axons by regulating their directional extension.

Awasaki T, Saito M, Sone M, Suzuki E, Sakai R, Ito K, Hama C.

Neuron. 2000 Apr;26(1):119-31.

14.

GAL4/UAS-WGA system as a powerful tool for tracing Drosophila transsynaptic neural pathways.

Tabuchi K, Sawamoto K, Suzuki E, Ozaki K, Sone M, Hama C, Tanifuji-Morimoto T, Yuasa Y, Yoshihara Y, Nose A, Okano H.

J Neurosci Res. 2000 Jan 1;59(1):94-9.

PMID:
10658189
15.
16.

Identification of the stef gene that encodes a novel guanine nucleotide exchange factor specific for Rac1.

Hoshino M, Sone M, Fukata M, Kuroda S, Kaibuchi K, Nabeshima Y, Hama C.

J Biol Chem. 1999 Jun 18;274(25):17837-44.

17.

Neural expression of hikaru genki protein during embryonic and larval development of Drosophila melanogaster.

Hoshino M, Suzuki E, Miyake T, Sone M, Komatsu A, Nabeshima Y, Hama C.

Dev Genes Evol. 1999 Jan;209(1):1-9.

PMID:
9914413
18.

Still life, a protein in synaptic terminals of Drosophila homologous to GDP-GTP exchangers.

Sone M, Hoshino M, Suzuki E, Kuroda S, Kaibuchi K, Nakagoshi H, Saigo K, Nabeshima Y, Hama C.

Science. 1997 Jan 24;275(5299):543-7. Erratum in: Science. 1997 Mar 7;275(5305):1405.

19.

Hikaru genki protein is secreted into synaptic clefts from an early stage of synapse formation in Drosophila.

Hoshino M, Suzuki E, Nabeshima Y, Hama C.

Development. 1996 Feb;122(2):589-97.

20.

hikaru genki, a CNS-specific gene identified by abnormal locomotion in Drosophila, encodes a novel type of protein.

Hoshino M, Matsuzaki F, Nabeshima Y, Hama C.

Neuron. 1993 Mar;10(3):395-407.

PMID:
8461133
21.

Cloning of the Drosophila prospero gene and its expression in ganglion mother cells.

Matsuzaki F, Koizumi K, Hama C, Yoshioka T, Nabeshima Y.

Biochem Biophys Res Commun. 1992 Feb 14;182(3):1326-32.

PMID:
1540176
22.

Establishment of rostrocaudal polarity in tectal primordium: engrailed expression and subsequent tectal polarity.

Itasaki N, Ichijo H, Hama C, Matsuno T, Nakamura H.

Development. 1991 Dec;113(4):1133-44.

23.

Positive and negative regulations of plasmid CoLIb-P9 repZ gene expression at the translational level.

Asano K, Kato A, Moriwaki H, Hama C, Shiba K, Mizobuchi K.

J Biol Chem. 1991 Feb 25;266(6):3774-81.

24.
25.

Role of leader peptide synthesis in repZ gene expression of the ColIb-P9 plasmid.

Hama C, Takizawa T, Moriwaki H, Mizobuchi K.

J Biol Chem. 1990 Jun 25;265(18):10666-73.

26.

Organization of the replication control region of plasmid ColIb-P9.

Hama C, Takizawa T, Moriwaki H, Urasaki Y, Mizobuchi K.

J Bacteriol. 1990 Apr;172(4):1983-91.

Supplemental Content

Support Center