Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 31

1.

TLR4 (Toll-Like Receptor 4)-Dependent Signaling Drives Extracellular Catabolism of LDL (Low-Density Lipoprotein) Aggregates.

Singh RK, Haka AS, Asmal A, Barbosa-Lorenzi VC, Grosheva I, Chin HF, Xiong Y, Hla T, Maxfield FR.

Arterioscler Thromb Vasc Biol. 2019 Oct 10:ATVBAHA119313200. doi: 10.1161/ATVBAHA.119.313200. [Epub ahead of print]

PMID:
31597445
2.

Dynamic Actin Reorganization and Vav/Cdc42-Dependent Actin Polymerization Promote Macrophage Aggregated LDL (Low-Density Lipoprotein) Uptake and Catabolism.

Singh RK, Haka AS, Bhardwaj P, Zha X, Maxfield FR.

Arterioscler Thromb Vasc Biol. 2019 Feb;39(2):137-149. doi: 10.1161/ATVBAHA.118.312087.

PMID:
30580573
3.

Metabolically Activated Adipose Tissue Macrophages Perform Detrimental and Beneficial Functions during Diet-Induced Obesity.

Coats BR, Schoenfelt KQ, Barbosa-Lorenzi VC, Peris E, Cui C, Hoffman A, Zhou G, Fernandez S, Zhai L, Hall BA, Haka AS, Shah AM, Reardon CA, Brady MJ, Rhodes CJ, Maxfield FR, Becker L.

Cell Rep. 2017 Sep 26;20(13):3149-3161. doi: 10.1016/j.celrep.2017.08.096.

4.

A Carbon Nanotube Optical Reporter Maps Endolysosomal Lipid Flux.

Jena PV, Roxbury D, Galassi TV, Akkari L, Horoszko CP, Iaea DB, Budhathoki-Uprety J, Pipalia N, Haka AS, Harvey JD, Mittal J, Maxfield FR, Joyce JA, Heller DA.

ACS Nano. 2017 Nov 28;11(11):10689-10703. doi: 10.1021/acsnano.7b04743. Epub 2017 Sep 12.

5.

Ceramide activation of RhoA/Rho kinase impairs actin polymerization during aggregated LDL catabolism.

Singh RK, Haka AS, Brumfield A, Grosheva I, Bhardwaj P, Chin HF, Xiong Y, Hla T, Maxfield FR.

J Lipid Res. 2017 Oct;58(10):1977-1987. doi: 10.1194/jlr.M076398. Epub 2017 Aug 16.

6.

Sphingosine kinases are not required for inflammatory responses in macrophages.

Xiong Y, Lee HJ, Mariko B, Lu YC, Dannenberg AJ, Haka AS, Maxfield FR, Camerer E, Proia RL, Hla T.

J Biol Chem. 2016 May 20;291(21):11465. doi: 10.1074/jbc.A113.483750. No abstract available.

7.

Exocytosis of macrophage lysosomes leads to digestion of apoptotic adipocytes and foam cell formation.

Haka AS, Barbosa-Lorenzi VC, Lee HJ, Falcone DJ, Hudis CA, Dannenberg AJ, Maxfield FR.

J Lipid Res. 2016 Jun;57(6):980-92. doi: 10.1194/jlr.M064089. Epub 2016 Apr 4.

8.

Degradation of aggregated LDL occurs in complex extracellular sub-compartments of the lysosomal synapse.

Singh RK, Barbosa-Lorenzi VC, Lund FW, Grosheva I, Maxfield FR, Haka AS.

J Cell Sci. 2016 Mar 1;129(5):1072-82. doi: 10.1242/jcs.181743. Epub 2016 Jan 22.

9.

Noninvasive Detection of Inflammatory Changes in White Adipose Tissue by Label-Free Raman Spectroscopy.

Haka AS, Sue E, Zhang C, Bhardwaj P, Sterling J, Carpenter C, Leonard M, Manzoor M, Walker J, Aleman JO, Gareau D, Holt PR, Breslow JL, Zhou XK, Giri D, Morrow M, Iyengar N, Barman I, Hudis CA, Dannenberg AJ.

Anal Chem. 2016 Feb 16;88(4):2140-8. doi: 10.1021/acs.analchem.5b03696. Epub 2016 Jan 28.

10.

Monocyte-Derived Dendritic Cells Upregulate Extracellular Catabolism of Aggregated Low-Density Lipoprotein on Maturation, Leading to Foam Cell Formation.

Haka AS, Singh RK, Grosheva I, Hoffner H, Capetillo-Zarate E, Chin HF, Anandasabapathy N, Maxfield FR.

Arterioscler Thromb Vasc Biol. 2015 Oct;35(10):2092-103. doi: 10.1161/ATVBAHA.115.305843. Epub 2015 Aug 20.

11.

Optimization of 1,2,5-thiadiazole carbamates as potent and selective ABHD6 inhibitors.

Patel JZ, Nevalainen TJ, Savinainen JR, Adams Y, Laitinen T, Runyon RS, Vaara M, Ahenkorah S, Kaczor AA, Navia-Paldanius D, Gynther M, Aaltonen N, Joharapurkar AA, Jain MR, Haka AS, Maxfield FR, Laitinen JT, Parkkari T.

ChemMedChem. 2015 Feb;10(2):253-65. doi: 10.1002/cmdc.201402453. Epub 2014 Dec 11.

12.

Identification of spermatogenesis in a rat sertoli-cell only model using Raman spectroscopy: a feasibility study.

Osterberg EC, Laudano MA, Ramasamy R, Sterling J, Robinson BD, Goldstein M, Li PS, Haka AS, Schlegel PN.

J Urol. 2014 Aug;192(2):607-12. doi: 10.1016/j.juro.2014.01.106. Epub 2014 Feb 8.

PMID:
24518766
13.

Sphingosine kinases are not required for inflammatory responses in macrophages.

Xiong Y, Lee HJ, Mariko B, Lu YC, Dannenberg AJ, Haka AS, Maxfield FR, Camerer E, Proia RL, Hla T.

J Biol Chem. 2013 Nov 8;288(45):32563-73. doi: 10.1074/jbc.M113.483750. Epub 2013 Sep 30. Erratum in: J Biol Chem. 2016 May 20;291(21):11465. Lee, Hyeuk Jong [corrected to Lee, Hyuek Jong].

14.

Plasmin promotes foam cell formation by increasing macrophage catabolism of aggregated low-density lipoprotein.

Haka AS, Grosheva I, Singh RK, Maxfield FR.

Arterioscler Thromb Vasc Biol. 2013 Aug;33(8):1768-78. doi: 10.1161/ATVBAHA.112.301109. Epub 2013 May 23.

15.

Intrinsic versus laser-induced fluorescence spectroscopy for coronary atherosclerosis: a generational comparison model for testing diagnostic accuracy.

Angheloiu GO, van de Poll SW, Georgakoudi I, Motz JT, Haka AS, Podrez E, Fitzmaurice M, Dasari RR, Feld MS, Kramer JR.

Appl Spectrosc. 2012 Dec;66(12):1403-10. doi: 10.1366/11-06566.

PMID:
23231902
16.

Quantitative analysis of monocyte subpopulations in murine atherosclerotic plaques by multiphoton microscopy.

Haka AS, Potteaux S, Fraser H, Randolph GJ, Maxfield FR.

PLoS One. 2012;7(9):e44823. Epub 2012 Sep 14.

17.

Mechanism of ceroid formation in atherosclerotic plaque: in situ studies using a combination of Raman and fluorescence spectroscopy.

Haka AS, Kramer JR, Dasari RR, Fitzmaurice M.

J Biomed Opt. 2011 Jan-Feb;16(1):011011. doi: 10.1117/1.3524304.

18.

Detection of coronary atherosclerotic plaques with superficial proteoglycans and foam cells using real-time intrinsic fluorescence spectroscopy.

Angheloiu GO, Haka AS, Georgakoudi I, Arendt J, Müller MG, Scepanovic OR, Evanko SP, Wight TN, Mukherjee P, Waldeck DH, Dasari RR, Fitzmaurice M, Kramer JR, Feld MS.

Atherosclerosis. 2011 Mar;215(1):96-102. doi: 10.1016/j.atherosclerosis.2010.11.020. Epub 2010 Nov 27.

19.

Diagnosing breast cancer using Raman spectroscopy: prospective analysis.

Haka AS, Volynskaya Z, Gardecki JA, Nazemi J, Shenk R, Wang N, Dasari RR, Fitzmaurice M, Feld MS.

J Biomed Opt. 2009 Sep-Oct;14(5):054023. doi: 10.1117/1.3247154.

20.

Macrophages create an acidic extracellular hydrolytic compartment to digest aggregated lipoproteins.

Haka AS, Grosheva I, Chiang E, Buxbaum AR, Baird BA, Pierini LM, Maxfield FR.

Mol Biol Cell. 2009 Dec;20(23):4932-40. doi: 10.1091/mbc.E09-07-0559. Epub 2009 Oct 7.

21.

Aggregated LDL in contact with macrophages induces local increases in free cholesterol levels that regulate local actin polymerization.

Grosheva I, Haka AS, Qin C, Pierini LM, Maxfield FR.

Arterioscler Thromb Vasc Biol. 2009 Oct;29(10):1615-21. doi: 10.1161/ATVBAHA.109.191882. Epub 2009 Jun 25.

22.

Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy.

Volynskaya Z, Haka AS, Bechtel KL, Fitzmaurice M, Shenk R, Wang N, Nazemi J, Dasari RR, Feld MS.

J Biomed Opt. 2008 Mar-Apr;13(2):024012. doi: 10.1117/1.2909672.

23.

Determination of uncertainty in parameters extracted from single spectroscopic measurements.

Sćepanović OR, Bechtel KL, Haka AS, Shih WC, Koo TW, Berger AJ, Feld MS.

J Biomed Opt. 2007 Nov-Dec;12(6):064012. doi: 10.1117/1.2815692.

24.

Intrinsic fluorescence and diffuse reflectance spectroscopy identify superficial foam cells in coronary plaques prone to erosion.

Angheloiu GO, Arendt JT, Müller MG, Haka AS, Georgakoudi I, Motz JT, Scepanovic OR, Kuban BD, Myles J, Miller F, Podrez EA, Fitzmaurice M, Kramer JR, Feld MS.

Arterioscler Thromb Vasc Biol. 2006 Jul;26(7):1594-600. Epub 2006 May 4.

PMID:
16675721
25.

In vivo Raman spectral pathology of human atherosclerosis and vulnerable plaque.

Motz JT, Fitzmaurice M, Miller A, Gandhi SJ, Haka AS, Galindo LH, Dasari RR, Kramer JR, Feld MS.

J Biomed Opt. 2006 Mar-Apr;11(2):021003.

26.

In vivo margin assessment during partial mastectomy breast surgery using raman spectroscopy.

Haka AS, Volynskaya Z, Gardecki JA, Nazemi J, Lyons J, Hicks D, Fitzmaurice M, Dasari RR, Crowe JP, Feld MS.

Cancer Res. 2006 Mar 15;66(6):3317-22.

27.

Real-time Raman system for in vivo disease diagnosis.

Motz JT, Gandhi SJ, Scepanovic OR, Haka AS, Kramer JR, Dasari RR, Feld MS.

J Biomed Opt. 2005 May-Jun;10(3):031113.

28.

Diagnosing breast cancer by using Raman spectroscopy.

Haka AS, Shafer-Peltier KE, Fitzmaurice M, Crowe J, Dasari RR, Feld MS.

Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12371-6. Epub 2005 Aug 22.

29.
30.

Model-based biological Raman spectral imaging.

Shafer-Peltier KE, Haka AS, Motz JT, Fitzmaurice M, Dasari RR, Feld MS.

J Cell Biochem Suppl. 2002;39:125-37.

PMID:
12552612
31.

Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy.

Haka AS, Shafer-Peltier KE, Fitzmaurice M, Crowe J, Dasari RR, Feld MS.

Cancer Res. 2002 Sep 15;62(18):5375-80.

Supplemental Content

Support Center