Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 38

1.

Memory-guided microsaccades.

Willeke KF, Tian X, Buonocore A, Bellet J, Ramirez-Cardenas A, Hafed ZM.

Nat Commun. 2019 Aug 16;10(1):3710. doi: 10.1038/s41467-019-11711-x.

2.

The Foveal Visual Representation of the Primate Superior Colliculus.

Chen CY, Hoffmann KP, Distler C, Hafed ZM.

Curr Biol. 2019 Jul 8;29(13):2109-2119.e7. doi: 10.1016/j.cub.2019.05.040. Epub 2019 Jun 27.

PMID:
31257138
3.

Eye Position Error Influence over "Open-Loop" Smooth Pursuit Initiation.

Buonocore A, Skinner J, Hafed ZM.

J Neurosci. 2019 Apr 3;39(14):2709-2721. doi: 10.1523/JNEUROSCI.2178-18.2019. Epub 2019 Feb 1.

4.

Human-level saccade detection performance using deep neural networks.

Bellet ME, Bellet J, Nienborg H, Hafed ZM, Berens P.

J Neurophysiol. 2019 Feb 1;121(2):646-661. doi: 10.1152/jn.00601.2018. Epub 2018 Dec 19.

PMID:
30565968
5.

Transfer function of the rhesus macaque oculomotor system for small-amplitude slow motion trajectories.

Skinner J, Buonocore A, Hafed ZM.

J Neurophysiol. 2019 Feb 1;121(2):513-529. doi: 10.1152/jn.00437.2018. Epub 2018 Dec 12.

PMID:
30540500
6.

Perisaccadic perceptual mislocalization is different for upward saccades.

Grujic N, Brehm N, Gloge C, Zhuo W, Hafed ZM.

J Neurophysiol. 2018 Dec 1;120(6):3198-3216. doi: 10.1152/jn.00350.2018. Epub 2018 Oct 17.

PMID:
30332326
7.

Superior Colliculus: A Vision for Orienting.

Hafed ZM.

Curr Biol. 2018 Sep 24;28(18):R1111-R1113. doi: 10.1016/j.cub.2018.07.047.

8.

Orientation and Contrast Tuning Properties and Temporal Flicker Fusion Characteristics of Primate Superior Colliculus Neurons.

Chen CY, Hafed ZM.

Front Neural Circuits. 2018 Jul 24;12:58. doi: 10.3389/fncir.2018.00058. eCollection 2018.

9.

Spatial frequency sensitivity in macaque midbrain.

Chen CY, Sonnenberg L, Weller S, Witschel T, Hafed ZM.

Nat Commun. 2018 Jul 20;9(1):2852. doi: 10.1038/s41467-018-05302-5.

10.

Dynamics of fixational eye position and microsaccades during spatial cueing: the case of express microsaccades.

Tian X, Yoshida M, Hafed ZM.

J Neurophysiol. 2018 May 1;119(5):1962-1980. doi: 10.1152/jn.00752.2017. Epub 2018 Feb 21.

11.

Sequential hemifield gating of α- and β-behavioral performance oscillations after microsaccades.

Bellet J, Chen CY, Hafed ZM.

J Neurophysiol. 2017 Nov 1;118(5):2789-2805. doi: 10.1152/jn.00253.2017. Epub 2017 Aug 9.

12.

Neuronal control of fixation and fixational eye movements.

Krauzlis RJ, Goffart L, Hafed ZM.

Philos Trans R Soc Lond B Biol Sci. 2017 Apr 19;372(1718). pii: 20160205. doi: 10.1098/rstb.2016.0205. Review.

13.

Informative Cues Facilitate Saccadic Localization in Blindsight Monkeys.

Yoshida M, Hafed ZM, Isa T.

Front Syst Neurosci. 2017 Feb 10;11:5. doi: 10.3389/fnsys.2017.00005. eCollection 2017.

14.

Alteration of the microsaccadic velocity-amplitude main sequence relationship after visual transients: implications for models of saccade control.

Buonocore A, Chen CY, Tian X, Idrees S, Münch TA, Hafed ZM.

J Neurophysiol. 2017 May 1;117(5):1894-1910. doi: 10.1152/jn.00811.2016. Epub 2017 Feb 15.

15.

A neural locus for spatial-frequency specific saccadic suppression in visual-motor neurons of the primate superior colliculus.

Chen CY, Hafed ZM.

J Neurophysiol. 2017 Apr 1;117(4):1657-1673. doi: 10.1152/jn.00911.2016. Epub 2017 Jan 18.

16.

How is visual salience computed in the brain? Insights from behaviour, neurobiology and modelling.

Veale R, Hafed ZM, Yoshida M.

Philos Trans R Soc Lond B Biol Sci. 2017 Feb 19;372(1714). pii: 20160113. doi: 10.1098/rstb.2016.0113. Epub 2017 Jan 2. Review.

17.

A Causal Role for the Cortical Frontal Eye Fields in Microsaccade Deployment.

Peel TR, Hafed ZM, Dash S, Lomber SG, Corneil BD.

PLoS Biol. 2016 Aug 10;14(8):e1002531. doi: 10.1371/journal.pbio.1002531. eCollection 2016 Aug.

18.

Sharper, Stronger, Faster Upper Visual Field Representation in Primate Superior Colliculus.

Hafed ZM, Chen CY.

Curr Biol. 2016 Jul 11;26(13):1647-1658. doi: 10.1016/j.cub.2016.04.059. Epub 2016 Jun 9.

19.

A Microsaccadic Account of Attentional Capture and Inhibition of Return in Posner Cueing.

Tian X, Yoshida M, Hafed ZM.

Front Syst Neurosci. 2016 Mar 7;10:23. doi: 10.3389/fnsys.2016.00023. eCollection 2016.

20.

Vision, Perception, and Attention through the Lens of Microsaccades: Mechanisms and Implications.

Hafed ZM, Chen CY, Tian X.

Front Syst Neurosci. 2015 Dec 2;9:167. doi: 10.3389/fnsys.2015.00167. eCollection 2015. Review.

21.

Neuronal Response Gain Enhancement prior to Microsaccades.

Chen CY, Ignashchenkova A, Thier P, Hafed ZM.

Curr Biol. 2015 Aug 17;25(16):2065-74. doi: 10.1016/j.cub.2015.06.022. Epub 2015 Jul 16.

22.

Oculomotor behavior of blind patients seeing with a subretinal visual implant.

Hafed ZM, Stingl K, Bartz-Schmidt KU, Gekeler F, Zrenner E.

Vision Res. 2016 Jan;118:119-31. doi: 10.1016/j.visres.2015.04.006. Epub 2015 Apr 20.

23.

On the dissociation between microsaccade rate and direction after peripheral cues: microsaccadic inhibition revisited.

Hafed ZM, Ignashchenkova A.

J Neurosci. 2013 Oct 9;33(41):16220-35. doi: 10.1523/JNEUROSCI.2240-13.2013.

24.

Active vision: microsaccades direct the eye to where it matters most.

Kagan I, Hafed ZM.

Curr Biol. 2013 Sep 9;23(17):R712-4. doi: 10.1016/j.cub.2013.07.038.

25.

Postmicrosaccadic enhancement of slow eye movements.

Chen CY, Hafed ZM.

J Neurosci. 2013 Mar 20;33(12):5375-86. doi: 10.1523/JNEUROSCI.3703-12.2013.

26.

Alteration of visual perception prior to microsaccades.

Hafed ZM.

Neuron. 2013 Feb 20;77(4):775-86. doi: 10.1016/j.neuron.2012.12.014.

27.

Superior colliculus inactivation alters the relationship between covert visual attention and microsaccades.

Hafed ZM, Lovejoy LP, Krauzlis RJ.

Eur J Neurosci. 2013 Apr;37(7):1169-81. doi: 10.1111/ejn.12127. Epub 2013 Jan 21.

28.

Visual fixation as equilibrium: evidence from superior colliculus inactivation.

Goffart L, Hafed ZM, Krauzlis RJ.

J Neurosci. 2012 Aug 1;32(31):10627-36. doi: 10.1523/JNEUROSCI.0696-12.2012.

29.

Similarity of superior colliculus involvement in microsaccade and saccade generation.

Hafed ZM, Krauzlis RJ.

J Neurophysiol. 2012 Apr;107(7):1904-16. doi: 10.1152/jn.01125.2011. Epub 2012 Jan 11.

30.

Modulation of microsaccades in monkey during a covert visual attention task.

Hafed ZM, Lovejoy LP, Krauzlis RJ.

J Neurosci. 2011 Oct 26;31(43):15219-30. doi: 10.1523/JNEUROSCI.3106-11.2011.

31.

Mechanisms for generating and compensating for the smallest possible saccades.

Hafed ZM.

Eur J Neurosci. 2011 Jun;33(11):2101-13. doi: 10.1111/j.1460-9568.2011.07694.x. Review.

PMID:
21645104
32.

Microsaccadic suppression of visual bursts in the primate superior colliculus.

Hafed ZM, Krauzlis RJ.

J Neurosci. 2010 Jul 14;30(28):9542-7. doi: 10.1523/JNEUROSCI.1137-10.2010.

33.

A neural mechanism for microsaccade generation in the primate superior colliculus.

Hafed ZM, Goffart L, Krauzlis RJ.

Science. 2009 Feb 13;323(5916):940-3. doi: 10.1126/science.1166112.

34.

Goal representations dominate superior colliculus activity during extrafoveal tracking.

Hafed ZM, Krauzlis RJ.

J Neurosci. 2008 Sep 17;28(38):9426-39. doi: 10.1523/JNEUROSCI.1313-08.2008.

35.

Superior colliculus inactivation causes stable offsets in eye position during tracking.

Hafed ZM, Goffart L, Krauzlis RJ.

J Neurosci. 2008 Aug 6;28(32):8124-37. doi: 10.1523/JNEUROSCI.1317-08.2008.

36.

Finding our way around the sensory-motor corner.

Krauzlis RJ, Hafed ZM.

Neuron. 2007 Jun 21;54(6):852-4.

37.

Ongoing eye movements constrain visual perception.

Hafed ZM, Krauzlis RJ.

Nat Neurosci. 2006 Nov;9(11):1449-57. Epub 2006 Oct 8.

PMID:
17028586
38.

Microsaccades as an overt measure of covert attention shifts.

Hafed ZM, Clark JJ.

Vision Res. 2002 Oct;42(22):2533-45.

Supplemental Content

Loading ...
Support Center