Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 7

1.

A Dynamic Connectome Supports the Emergence of Stable Computational Function of Neural Circuits through Reward-Based Learning.

Kappel D, Legenstein R, Habenschuss S, Hsieh M, Maass W.

eNeuro. 2018 Apr 24;5(2). pii: ENEURO.0301-17.2018. doi: 10.1523/ENEURO.0301-17.2018. eCollection 2018 Mar-Apr.

2.

Feedback Inhibition Shapes Emergent Computational Properties of Cortical Microcircuit Motifs.

Jonke Z, Legenstein R, Habenschuss S, Maass W.

J Neurosci. 2017 Aug 30;37(35):8511-8523. doi: 10.1523/JNEUROSCI.2078-16.2017. Epub 2017 Jul 31.

3.

Solving Constraint Satisfaction Problems with Networks of Spiking Neurons.

Jonke Z, Habenschuss S, Maass W.

Front Neurosci. 2016 Mar 30;10:118. doi: 10.3389/fnins.2016.00118. eCollection 2016.

4.

Network Plasticity as Bayesian Inference.

Kappel D, Habenschuss S, Legenstein R, Maass W.

PLoS Comput Biol. 2015 Nov 6;11(11):e1004485. doi: 10.1371/journal.pcbi.1004485. eCollection 2015 Nov.

5.

Distributed Bayesian Computation and Self-Organized Learning in Sheets of Spiking Neurons with Local Lateral Inhibition.

Bill J, Buesing L, Habenschuss S, Nessler B, Maass W, Legenstein R.

PLoS One. 2015 Aug 18;10(8):e0134356. doi: 10.1371/journal.pone.0134356. eCollection 2015.

6.

Stochastic computations in cortical microcircuit models.

Habenschuss S, Jonke Z, Maass W.

PLoS Comput Biol. 2013;9(11):e1003311. doi: 10.1371/journal.pcbi.1003311. Epub 2013 Nov 14.

7.

Emergence of optimal decoding of population codes through STDP.

Habenschuss S, Puhr H, Maass W.

Neural Comput. 2013 Jun;25(6):1371-407. doi: 10.1162/NECO_a_00446. Epub 2013 Mar 21.

PMID:
23517096

Supplemental Content

Loading ...
Support Center