Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 39

1.

Using extremal events to characterize noisy time series.

Berry E, Cummins B, Nerem RR, Smith LM, Haase SB, Gedeon T.

J Math Biol. 2020 Apr;80(5):1523-1557. doi: 10.1007/s00285-020-01471-4. Epub 2020 Feb 1.

PMID:
32008103
2.

The cell-cycle transcriptional network generates and transmits a pulse of transcription once each cell cycle.

Cho CY, Kelliher CM, Haase SB.

Cell Cycle. 2019 Feb;18(4):363-378. doi: 10.1080/15384101.2019.1570655. Epub 2019 Feb 5.

3.

Layers of regulation of cell-cycle gene expression in the budding yeast Saccharomyces cerevisiae.

Kelliher CM, Foster MW, Motta FC, Deckard A, Soderblom EJ, Moseley MA, Haase SB.

Mol Biol Cell. 2018 Nov 1;29(22):2644-2655. doi: 10.1091/mbc.E18-04-0255. Epub 2018 Sep 12.

4.

Antihypertensive medication withholding practices in hemodialysis: A survey study of patients and providers.

Haase SB, Chang S, Schiller B, Chertow GM, Chang TI.

Hemodial Int. 2018 Jul;22(3):415-418. doi: 10.1111/hdi.12640. Epub 2018 Feb 13. No abstract available.

5.

Reconciling conflicting models for global control of cell-cycle transcription.

Cho CY, Motta FC, Kelliher CM, Deckard A, Haase SB.

Cell Cycle. 2017 Oct 18;16(20):1965-1978. doi: 10.1080/15384101.2017.1367073. Epub 2017 Sep 21.

6.

Connecting virulence pathways to cell-cycle progression in the fungal pathogen Cryptococcus neoformans.

Kelliher CM, Haase SB.

Curr Genet. 2017 Oct;63(5):803-811. doi: 10.1007/s00294-017-0688-5. Epub 2017 Mar 6. Review.

7.

Investigating Conservation of the Cell-Cycle-Regulated Transcriptional Program in the Fungal Pathogen, Cryptococcus neoformans.

Kelliher CM, Leman AR, Sierra CS, Haase SB.

PLoS Genet. 2016 Dec 5;12(12):e1006453. doi: 10.1371/journal.pgen.1006453. eCollection 2016 Dec.

8.

The Local Edge Machine: inference of dynamic models of gene regulation.

McGoff KA, Guo X, Deckard A, Kelliher CM, Leman AR, Francey LJ, Hogenesch JB, Haase SB, Harer JL.

Genome Biol. 2016 Oct 19;17(1):214.

9.

SW1PerS: Sliding windows and 1-persistence scoring; discovering periodicity in gene expression time series data.

Perea JA, Deckard A, Haase SB, Harer J.

BMC Bioinformatics. 2015 Aug 16;16:257. doi: 10.1186/s12859-015-0645-6.

10.

Checkpoints couple transcription network oscillator dynamics to cell-cycle progression.

Bristow SL, Leman AR, Simmons Kovacs LA, Deckard A, Harer J, Haase SB.

Genome Biol. 2014 Sep 5;15(9):446. doi: 10.1186/s13059-014-0446-7.

11.

Analyzing transcription dynamics during the budding yeast cell cycle.

Leman AR, Bristow SL, Haase SB.

Methods Mol Biol. 2014;1170:295-312. doi: 10.1007/978-1-4939-0888-2_14.

PMID:
24906319
12.

Cell cycle-regulated transcription: effectively using a genomics toolbox.

Bristow SL, Leman AR, Haase SB.

Methods Mol Biol. 2014;1170:3-27. doi: 10.1007/978-1-4939-0888-2_1.

PMID:
24906306
13.

Topology and control of the cell-cycle-regulated transcriptional circuitry.

Haase SB, Wittenberg C.

Genetics. 2014 Jan;196(1):65-90. doi: 10.1534/genetics.113.152595. Review.

14.

Design and analysis of large-scale biological rhythm studies: a comparison of algorithms for detecting periodic signals in biological data.

Deckard A, Anafi RC, Hogenesch JB, Haase SB, Harer J.

Bioinformatics. 2013 Dec 15;29(24):3174-80. doi: 10.1093/bioinformatics/btt541. Epub 2013 Sep 20.

15.

Branching process deconvolution algorithm reveals a detailed cell-cycle transcription program.

Guo X, Bernard A, Orlando DA, Haase SB, Hartemink AJ.

Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):E968-77. doi: 10.1073/pnas.1120991110. Epub 2013 Feb 6.

16.

New and Redesigned pRS Plasmid Shuttle Vectors for Genetic Manipulation of Saccharomycescerevisiae.

Chee MK, Haase SB.

G3 (Bethesda). 2012 May;2(5):515-26. doi: 10.1534/g3.111.001917. Epub 2012 May 1.

17.

Parametric modeling of cellular state transitions as measured with flow cytometry.

Ho HJ, Lin TI, Chang HH, Haase SB, Huang S, Pyne S.

BMC Bioinformatics. 2012 Apr 12;13 Suppl 5:S5. doi: 10.1186/1471-2105-13-S5-S5.

18.

Cyclin-dependent kinases are regulators and effectors of oscillations driven by a transcription factor network.

Simmons Kovacs LA, Mayhew MB, Orlando DA, Jin Y, Li Q, Huang C, Reed SI, Mukherjee S, Haase SB.

Mol Cell. 2012 Mar 9;45(5):669-79. doi: 10.1016/j.molcel.2011.12.033. Epub 2012 Feb 2. Erratum in: Mol Cell. 2013 Mar 28;49(6):1177-9.

19.

A generalized model for multi-marker analysis of cell cycle progression in synchrony experiments.

Mayhew MB, Robinson JW, Jung B, Haase SB, Hartemink AJ.

Bioinformatics. 2011 Jul 1;27(13):i295-303. doi: 10.1093/bioinformatics/btr244.

20.

B-cyclin/CDKs regulate mitotic spindle assembly by phosphorylating kinesins-5 in budding yeast.

Chee MK, Haase SB.

PLoS Genet. 2010 May 6;6(5):e1000935. doi: 10.1371/journal.pgen.1000935.

21.

Cohesin: it's not just for chromosomes anymore.

Simmons Kovacs LA, Haase SB.

Cell Cycle. 2010 May;9(9):1750-3. Epub 2010 May 16. No abstract available.

PMID:
20436287
22.

A branching process model for flow cytometry and budding index measurements in cell synchrony experiments.

Orlando DA, Iversen ES Jr, Hartemink AJ, Haase SB.

Ann Appl Stat. 2009 Winter;3(4):1521-1541.

23.

Cell cycle analysis of budding yeast using SYTOX Green.

Haase SB.

Curr Protoc Cytom. 2004 Nov;Chapter 7:Unit 7.23. doi: 10.1002/0471142956.cy0723s26.

PMID:
18770800
24.

Transcription networks and cyclin/CDKs: the yin and yang of cell cycle oscillators.

Simmons Kovacs LA, Orlando DA, Haase SB.

Cell Cycle. 2008 Sep 1;7(17):2626-9. Epub 2008 Sep 26. Review.

PMID:
18758238
25.

Intrinsic and cyclin-dependent kinase-dependent control of spindle pole body duplication in budding yeast.

Simmons Kovacs LA, Nelson CL, Haase SB.

Mol Biol Cell. 2008 Aug;19(8):3243-53. doi: 10.1091/mbc.E08-02-0148. Epub 2008 May 14.

26.

Global control of cell-cycle transcription by coupled CDK and network oscillators.

Orlando DA, Lin CY, Bernard A, Wang JY, Socolar JE, Iversen ES, Hartemink AJ, Haase SB.

Nature. 2008 Jun 12;453(7197):944-7. doi: 10.1038/nature06955. Epub 2008 May 7.

27.

Microtubule organization: cell shape is destiny.

Haase SB, Lew DJ.

Curr Biol. 2007 Apr 3;17(7):R249-51.

28.

A probabilistic model for cell cycle distributions in synchrony experiments.

Orlando DA, Lin CY, Bernard A, Iversen ES, Hartemink AJ, Haase SB.

Cell Cycle. 2007 Feb 15;6(4):478-88. Epub 2007 Feb 12.

PMID:
17329975
29.

Distinct mechanisms control the stability of the related S-phase cyclins Clb5 and Clb6.

Jackson LP, Reed SI, Haase SB.

Mol Cell Biol. 2006 Mar;26(6):2456-66.

30.

Improved flow cytometric analysis of the budding yeast cell cycle.

Haase SB, Reed SI.

Cell Cycle. 2002 Mar-Apr;1(2):132-6.

PMID:
12429922
31.

A festival of cell-cycle controls.

Haase SB, Clarke DJ.

Trends Cell Biol. 2001 Nov;11(11):445-6.

PMID:
11684413
32.

Multi-step control of spindle pole body duplication by cyclin-dependent kinase.

Haase SB, Winey M, Reed SI.

Nat Cell Biol. 2001 Jan;3(1):38-42.

PMID:
11146624
33.

Functions of fission yeast orp2 in DNA replication and checkpoint control.

Kiely J, Haase SB, Russell P, Leatherwood J.

Genetics. 2000 Feb;154(2):599-607.

34.

Evidence that a free-running oscillator drives G1 events in the budding yeast cell cycle.

Haase SB, Reed SI.

Nature. 1999 Sep 23;401(6751):394-7.

PMID:
10517640
35.

Flow cytometric analysis of DNA content in budding yeast.

Haase SB, Lew DJ.

Methods Enzymol. 1997;283:322-32. No abstract available.

PMID:
9251030
36.

Transcription inhibits the replication of autonomously replicating plasmids in human cells.

Haase SB, Heinzel SS, Calos MP.

Mol Cell Biol. 1994 Apr;14(4):2516-24.

37.

Replication control of autonomously replicating human sequences.

Haase SB, Calos MP.

Nucleic Acids Res. 1991 Sep 25;19(18):5053-8.

38.

Isolation of human sequences that replicate autonomously in human cells.

Krysan PJ, Haase SB, Calos MP.

Mol Cell Biol. 1989 Mar;9(3):1026-33.

39.

Improved EBV shuttle vectors.

Haase SB, Heinzel SS, Krysan PJ, Calos MP.

Mutat Res. 1989 Mar-May;220(2-3):125-32.

PMID:
2538736

Supplemental Content

Loading ...
Support Center