Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 36

1.

Assessment of inner dynein arm structure and possible function in ciliary and flagellar axonemes.

Taylor HC, Satir P, Holwill ME.

Cell Motil Cytoskeleton. 1999;43(2):167-77.

PMID:
10379841
2.

Mechanochemical aspects of axonemal dynein activity studied by in vitro microtubule translocation.

Hamasaki T, Holwill ME, Barkalow K, Satir P.

Biophys J. 1995 Dec;69(6):2569-79.

3.

Biophysical aspects and modelling of ciliary motility.

Holwill ME, Foster GF, Hamasaki T, Satir P.

Cell Motil Cytoskeleton. 1995;32(2):114-20. Review.

PMID:
8681391
4.

Structural and geometrical constraints on the outer dynein arm in situ.

Barkalow K, Avolio J, Holwill ME, Hamasaki T, Satir P.

Cell Motil Cytoskeleton. 1994;27(4):299-312.

PMID:
8069938
5.

Physical model of axonemal splitting.

Holwill ME, Satir P.

Cell Motil Cytoskeleton. 1994;27(4):287-98.

PMID:
8069937
6.
7.

A physical model of microtubule sliding in ciliary axonemes.

Holwill ME, Satir P.

Biophys J. 1990 Oct;58(4):905-17.

8.

Flagellar wave reversal in the kinetoplastid flagellate Crithidia oncopelti.

Sugrue P, Hirons MR, Adam JU, Holwill ME.

Biol Cell. 1988;63(2):127-31.

PMID:
3203154
9.

Structures attached to doublet microtubules of cilia: computer modeling of thin-section and negative-stain stereo images.

Avolio J, Glazzard AN, Holwill ME, Satir P.

Proc Natl Acad Sci U S A. 1986 Jul;83(13):4804-8.

10.

Dynamics of eukaryotic flagellar movement.

Holwill ME.

Symp Soc Exp Biol. 1982;35:289-312. Review. No abstract available.

PMID:
6764042
11.

Motile flagellar axonemes with a 9 + 1 microtubule configuration.

Marchese-Ragona S, Holwill ME.

Nature. 1980 Oct 30;287(5785):867-9.

PMID:
6448961
12.
13.

Some biophysical aspects of ciliary and flagellar motility.

Holwill ME.

Adv Microb Physiol. 1977;16:1-48. Review. No abstract available.

PMID:
415528
14.

Effects of calcium on flagellar movement in the trypanosome Crithidia oncopelti.

Holwill ME, McGregor JL.

J Exp Biol. 1976 Aug;65(1):229-42.

15.

Control of flagellar wave movement in Crithidia oncopelti.

Holwill ME, McGregor JL.

Nature. 1975 May 8;255(5504):157-8. No abstract available.

PMID:
1128679
16.
17.

Effects of pressure and temperature changes on the flagellar movement of crithidia oncopelti.

Coakley CJ, Holwill ME.

J Exp Biol. 1974 Jun;60(3):605-29. No abstract available.

18.

Micromanipulation of the flagellum of Crithidia oncopelti. I. Mechanical effects.

Holwill ME, McGregor JL.

J Exp Biol. 1974 Apr;60(2):437-44. No abstract available.

19.

Some physical aspects of the motility of ciliated and flagellated microorganisms.

Holwill ME.

Sci Prog. 1974 Spring;61(241):63-80. No abstract available.

PMID:
4808419
20.

Behaviour of flagella isolated from Crithidia oncopelti.

Douglas GJ, Holwill ME.

J Mechanochem Cell Motil. 1972 Dec;1(4):213-23. No abstract available.

PMID:
4371768
21.

Propulsion of micro-organisms by three-dimensional flagellar waves.

Coakley CJ, Holwill ME.

J Theor Biol. 1972 Jun;35(3):525-42. No abstract available.

PMID:
5041665
22.

An analysis of hypothetical flagellar waveforms.

Silvester NR, Holwill ME.

J Theor Biol. 1972 Jun;35(3):505-23. No abstract available.

PMID:
5041664
23.

A mechanochemical model of flagellar activity.

Miles CA, Holwill ME.

Biophys J. 1971 Nov;11(11):851-9.

24.

Hydrodynamic analysis of non-uniform flagellar undulations.

Holwill ME, Miles CA.

J Theor Biol. 1971 Apr;31(1):25-42. No abstract available.

PMID:
5576775
25.

The effects of laser microbeam irradiation on the flagellum of Crithidia (Strigomonas) oncopelti.

Goldstein SF, Holwill ME, Silvester NR.

J Exp Biol. 1970 Oct;53(2):401-9. No abstract available.

26.

Scale effect and model microorganisms.

Holwill ME.

Nature. 1970 Jun 13;226(5250):1046-7. No abstract available.

PMID:
5447017
27.

Energetics of ciliary movement in Sabellaria and Mytilus.

Sleigh MA, Holwill ME.

J Exp Biol. 1969 Jun;50(3):733-43. No abstract available.

28.

Asymmetric flagellar movement in relation to the orientation of the spore of Blastocladiella emersonii.

Miles CA, Holwill ME.

J Exp Biol. 1969 Jun;50(3):683-7. No abstract available.

29.

Kinetic studies of the flagellar movement of sea-urchin spermatozoa.

Holwill ME.

J Exp Biol. 1969 Feb;50(1):203-22. No abstract available.

30.

Thermodynamic aspects of flagellar activity.

Holwill ME, Silvester NR.

J Exp Biol. 1967 Oct;47(2):249-65. No abstract available.

31.

Propulsion by hispid flagella.

Holwill ME, Sleigh MA.

J Exp Biol. 1967 Oct;47(2):267-76. No abstract available.

32.

The motion of Euglena viridis: the role of flagella.

Holwill ME.

J Exp Biol. 1966 Jun;44(3):579-88. No abstract available.

33.

The thermal dependence of flagellar activity in Strigomonas oncopelti.

Holwill ME, Silvester NR.

J Exp Biol. 1965 Jun;42(3):537-44. No abstract available.

34.

MOLECULAR HYPOTHESIS OF FLAGELLAR ACTIVITY.

SILVESTER NR, HOLWILL ME.

Nature. 1965 Feb 13;205:665-8. No abstract available.

PMID:
14287401
35.

DEFORMATION OF ERYTHROCYTES BY TRYPANOSOMES.

HOLWILL ME.

Exp Cell Res. 1965 Feb;37:306-11. No abstract available.

PMID:
14298943
36.

A hydrodynamic study of the motility of flagellated bacteria.

HOLWILL ME, BURGE RE.

Arch Biochem Biophys. 1963 May;101:249-60. No abstract available.

PMID:
13961491

Supplemental Content

Loading ...
Support Center