Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 59

1.

Excitation of Diverse Classes of Cholecystokinin Interneurons in the Basal Amygdala Facilitates Fear Extinction.

Rovira-Esteban L, Gunduz-Cinar O, Bukalo O, Limoges A, Brockway E, Müller K, Fenno L, Kim YS, Ramakrishnan C, Andrási T, Deisseroth K, Holmes A, Hájos N.

eNeuro. 2019 Nov 7;6(6). pii: ENEURO.0220-19.2019. doi: 10.1523/ENEURO.0220-19.2019. Print 2019 Nov/Dec.

2.

Vasoactive Intestinal Polypeptide-Immunoreactive Interneurons within Circuits of the Mouse Basolateral Amygdala.

Rhomberg T, Rovira-Esteban L, Vikór A, Paradiso E, Kremser C, Nagy-Pál P, Papp OI, Tasan R, Erdélyi F, Szabó G, Ferraguti F, Hájos N.

J Neurosci. 2018 Aug 1;38(31):6983-7003. doi: 10.1523/JNEUROSCI.2063-17.2018. Epub 2018 Jun 28.

3.

Differential excitatory control of 2 parallel basket cell networks in amygdala microcircuits.

Andrási T, Veres JM, Rovira-Esteban L, Kozma R, Vikór A, Gregori E, Hájos N.

PLoS Biol. 2017 May 24;15(5):e2001421. doi: 10.1371/journal.pbio.2001421. eCollection 2017 May.

4.

Morphological and physiological properties of CCK/CB1R-expressing interneurons in the basal amygdala.

Rovira-Esteban L, Péterfi Z, Vikór A, Máté Z, Szabó G, Hájos N.

Brain Struct Funct. 2017 Nov;222(8):3543-3565. doi: 10.1007/s00429-017-1417-z. Epub 2017 Apr 8.

PMID:
28391401
5.

Perisomatic GABAergic synapses of basket cells effectively control principal neuron activity in amygdala networks.

Veres JM, Nagy GA, Hájos N.

Elife. 2017 Jan 6;6. pii: e20721. doi: 10.7554/eLife.20721.

6.

Different output properties of perisomatic region-targeting interneurons in the basal amygdala.

Barsy B, Szabó GG, Andrási T, Vikór A, Hájos N.

Eur J Neurosci. 2017 Feb;45(4):548-558. doi: 10.1111/ejn.13498. Epub 2017 Jan 21.

PMID:
27977063
7.

Properties and dynamics of inhibitory synaptic communication within the CA3 microcircuits of pyramidal cells and interneurons expressing parvalbumin or cholecystokinin.

Kohus Z, Káli S, Rovira-Esteban L, Schlingloff D, Papp O, Freund TF, Hájos N, Gulyás AI.

J Physiol. 2016 Jul 1;594(13):3745-74. doi: 10.1113/JP272231. Epub 2016 May 5.

8.

Synaptic Organization of Perisomatic GABAergic Inputs onto the Principal Cells of the Mouse Basolateral Amygdala.

Vereczki VK, Veres JM, Müller K, Nagy GA, Rácz B, Barsy B, Hájos N.

Front Neuroanat. 2016 Mar 7;10:20. doi: 10.3389/fnana.2016.00020. eCollection 2016.

9.

Corrigendum: Tonic endocannabinoid-mediated modulation of GABA release is independent of the CB1 content of axon terminals.

Lenkey N, Kirizs T, Holderith N, Máté Z, Szabó G, Vizi ES, Hájos N, Nusser Z.

Nat Commun. 2015 Aug 26;6:8226. doi: 10.1038/ncomms9226. No abstract available.

10.

Tonic endocannabinoid-mediated modulation of GABA release is independent of the CB1 content of axon terminals.

Lenkey N, Kirizs T, Holderith N, Máté Z, Szabó G, Vizi ES, Hájos N, Nusser Z.

Nat Commun. 2015 Apr 20;6:6557. doi: 10.1038/ncomms7557. Erratum in: Nat Commun. 2015;6:8226.

11.

Strategically positioned inhibitory synapses of axo-axonic cells potently control principal neuron spiking in the basolateral amygdala.

Veres JM, Nagy GA, Vereczki VK, Andrási T, Hájos N.

J Neurosci. 2014 Dec 3;34(49):16194-206. doi: 10.1523/JNEUROSCI.2232-14.2014.

12.

Mechanisms of sharp wave initiation and ripple generation.

Schlingloff D, Káli S, Freund TF, Hájos N, Gulyás AI.

J Neurosci. 2014 Aug 20;34(34):11385-98. doi: 10.1523/JNEUROSCI.0867-14.2014.

13.

Anatomically heterogeneous populations of CB1 cannabinoid receptor-expressing interneurons in the CA3 region of the hippocampus show homogeneous input-output characteristics.

Szabó GG, Papp OI, Máté Z, Szabó G, Hájos N.

Hippocampus. 2014 Dec;24(12):1506-23. doi: 10.1002/hipo.22330. Epub 2014 Jul 28.

PMID:
25044969
14.

Presynaptic calcium channel inhibition underlies CB₁ cannabinoid receptor-mediated suppression of GABA release.

Szabó GG, Lenkey N, Holderith N, Andrási T, Nusser Z, Hájos N.

J Neurosci. 2014 Jun 4;34(23):7958-63. doi: 10.1523/JNEUROSCI.0247-14.2014.

15.

Feedforward inhibition underlies the propagation of cholinergically induced gamma oscillations from hippocampal CA3 to CA1.

Zemankovics R, Veres JM, Oren I, Hájos N.

J Neurosci. 2013 Jul 24;33(30):12337-51. doi: 10.1523/JNEUROSCI.3680-12.2013.

16.

Input-output features of anatomically identified CA3 neurons during hippocampal sharp wave/ripple oscillation in vitro.

Hájos N, Karlócai MR, Németh B, Ulbert I, Monyer H, Szabó G, Erdélyi F, Freund TF, Gulyás AI.

J Neurosci. 2013 Jul 10;33(28):11677-91. doi: 10.1523/JNEUROSCI.5729-12.2013.

17.

Different input and output properties characterize parvalbumin-positive basket and Axo-axonic cells in the hippocampal CA3 subfield.

Papp OI, Karlócai MR, Tóth IE, Freund TF, Hájos N.

Hippocampus. 2013 Oct;23(10):903-18. doi: 10.1002/hipo.22147. Epub 2013 Jun 27.

PMID:
23733415
18.

DAG-sensitive and Ca(2+) permeable TRPC6 channels are expressed in dentate granule cells and interneurons in the hippocampal formation.

Nagy GA, Botond G, Borhegyi Z, Plummer NW, Freund TF, Hájos N.

Hippocampus. 2013 Mar;23(3):221-32. doi: 10.1002/hipo.22081. Epub 2012 Nov 29.

19.

Endocannabinoid-mediated long-term depression of afferent excitatory synapses in hippocampal pyramidal cells and GABAergic interneurons.

Péterfi Z, Urbán GM, Papp OI, Németh B, Monyer H, Szabó G, Erdélyi F, Mackie K, Freund TF, Hájos N, Katona I.

J Neurosci. 2012 Oct 10;32(41):14448-63. doi: 10.1523/JNEUROSCI.1676-12.2012.

20.

Cannabinoids attenuate hippocampal γ oscillations by suppressing excitatory synaptic input onto CA3 pyramidal neurons and fast spiking basket cells.

Holderith N, Németh B, Papp OI, Veres JM, Nagy GA, Hájos N.

J Physiol. 2011 Oct 15;589(Pt 20):4921-34. doi: 10.1113/jphysiol.2011.216259. Epub 2011 Aug 22.

21.

The effects of an Echinacea preparation on synaptic transmission and the firing properties of CA1 pyramidal cells in the hippocampus.

Hájos N, Holderith N, Németh B, Papp OI, Szabó GG, Zemankovics R, Freund TF, Haller J.

Phytother Res. 2012 Mar;26(3):354-62. doi: 10.1002/ptr.3556. Epub 2011 Jun 30.

PMID:
21717515
22.

Nitric oxide signaling modulates synaptic transmission during early postnatal development.

Cserép C, Szonyi A, Veres JM, Németh B, Szabadits E, de Vente J, Hájos N, Freund TF, Nyiri G.

Cereb Cortex. 2011 Sep;21(9):2065-74. doi: 10.1093/cercor/bhq281. Epub 2011 Jan 31.

23.

Roller Coaster Scanning reveals spontaneous triggering of dendritic spikes in CA1 interneurons.

Katona G, Kaszás A, Turi GF, Hájos N, Tamás G, Vizi ES, Rózsa B.

Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2148-53. doi: 10.1073/pnas.1009270108. Epub 2011 Jan 11.

24.

Parvalbumin-containing fast-spiking basket cells generate the field potential oscillations induced by cholinergic receptor activation in the hippocampus.

Gulyás AI, Szabó GG, Ulbert I, Holderith N, Monyer H, Erdélyi F, Szabó G, Freund TF, Hájos N.

J Neurosci. 2010 Nov 10;30(45):15134-45. doi: 10.1523/JNEUROSCI.4104-10.2010.

25.

Distinct synaptic properties of perisomatic inhibitory cell types and their different modulation by cholinergic receptor activation in the CA3 region of the mouse hippocampus.

Szabó GG, Holderith N, Gulyás AI, Freund TF, Hájos N.

Eur J Neurosci. 2010 Jun;31(12):2234-46. doi: 10.1111/j.1460-9568.2010.07292.x. Epub 2010 Jun 7.

26.

Differences in subthreshold resonance of hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane characteristics.

Zemankovics R, Káli S, Paulsen O, Freund TF, Hájos N.

J Physiol. 2010 Jun 15;588(Pt 12):2109-32. doi: 10.1113/jphysiol.2009.185975. Epub 2010 Apr 26.

27.

Identification of the current generator underlying cholinergically induced gamma frequency field potential oscillations in the hippocampal CA3 region.

Oren I, Hájos N, Paulsen O.

J Physiol. 2010 Mar 1;588(Pt 5):785-97. doi: 10.1113/jphysiol.2009.180851. Epub 2010 Jan 5.

28.

Network mechanisms of gamma oscillations in the CA3 region of the hippocampus.

Hájos N, Paulsen O.

Neural Netw. 2009 Oct;22(8):1113-9. doi: 10.1016/j.neunet.2009.07.024. Epub 2009 Jul 22. Review.

PMID:
19683412
29.

Establishing a physiological environment for visualized in vitro brain slice recordings by increasing oxygen supply and modifying aCSF content.

Hájos N, Mody I.

J Neurosci Methods. 2009 Oct 15;183(2):107-13. doi: 10.1016/j.jneumeth.2009.06.005. Epub 2009 Jun 12. Review.

30.

Maintaining network activity in submerged hippocampal slices: importance of oxygen supply.

Hájos N, Ellender TJ, Zemankovics R, Mann EO, Exley R, Cragg SJ, Freund TF, Paulsen O.

Eur J Neurosci. 2009 Jan;29(2):319-27. doi: 10.1111/j.1460-9568.2008.06577.x.

31.

Involvement of nitric oxide in depolarization-induced suppression of inhibition in hippocampal pyramidal cells during activation of cholinergic receptors.

Makara JK, Katona I, Nyíri G, Németh B, Ledent C, Watanabe M, de Vente J, Freund TF, Hájos N.

J Neurosci. 2007 Sep 19;27(38):10211-22.

32.

CB1 receptor-dependent and -independent inhibition of excitatory postsynaptic currents in the hippocampus by WIN 55,212-2.

Németh B, Ledent C, Freund TF, Hájos N.

Neuropharmacology. 2008 Jan;54(1):51-7. Epub 2007 Jul 17.

33.

Control of excitatory synaptic transmission by capsaicin is unaltered in TRPV1 vanilloid receptor knockout mice.

Benninger F, Freund TF, Hájos N.

Neurochem Int. 2008 Jan;52(1-2):89-94. Epub 2007 Jun 21.

34.

Correlated species differences in the effects of cannabinoid ligands on anxiety and on GABAergic and glutamatergic synaptic transmission.

Haller J, Mátyás F, Soproni K, Varga B, Barsy B, Németh B, Mikics E, Freund TF, Hájos N.

Eur J Neurosci. 2007 Apr;25(8):2445-56.

35.

Synaptic currents in anatomically identified CA3 neurons during hippocampal gamma oscillations in vitro.

Oren I, Mann EO, Paulsen O, Hájos N.

J Neurosci. 2006 Sep 27;26(39):9923-34.

36.

Endocannabinoid signaling in rat somatosensory cortex: laminar differences and involvement of specific interneuron types.

Bodor AL, Katona I, Nyíri G, Mackie K, Ledent C, Hájos N, Freund TF.

J Neurosci. 2005 Jul 20;25(29):6845-56.

37.

Perisomatic feedback inhibition underlies cholinergically induced fast network oscillations in the rat hippocampus in vitro.

Mann EO, Suckling JM, Hajos N, Greenfield SA, Paulsen O.

Neuron. 2005 Jan 6;45(1):105-17.

38.

Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro.

Hájos N, Pálhalmi J, Mann EO, Németh B, Paulsen O, Freund TF.

J Neurosci. 2004 Oct 13;24(41):9127-37.

39.

Distinct properties of carbachol- and DHPG-induced network oscillations in hippocampal slices.

Pálhalmi J, Paulsen O, Freund TF, Hájos N.

Neuropharmacology. 2004 Sep;47(3):381-9.

PMID:
15275827
40.
41.

Interneurons are the local targets of hippocampal inhibitory cells which project to the medial septum.

Gulyás AI, Hájos N, Katona I, Freund TF.

Eur J Neurosci. 2003 May;17(9):1861-72.

PMID:
12752786
42.

Excitement reduces inhibition via endocannabinoids.

Freund TF, Hájos N.

Neuron. 2003 May 8;38(3):362-5. Review.

43.

Distinct cannabinoid sensitive receptors regulate hippocampal excitation and inhibition.

Hájos N, Freund TF.

Chem Phys Lipids. 2002 Dec 31;121(1-2):73-82. Review.

PMID:
12505692
45.
46.

Distribution of CB1 cannabinoid receptors in the amygdala and their role in the control of GABAergic transmission.

Katona I, Rancz EA, Acsady L, Ledent C, Mackie K, Hajos N, Freund TF.

J Neurosci. 2001 Dec 1;21(23):9506-18.

47.
48.

Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations.

Hájos N, Katona I, Naiem SS, MacKie K, Ledent C, Mody I, Freund TF.

Eur J Neurosci. 2000 Sep;12(9):3239-49.

PMID:
10998107
49.

Cell type- and synapse-specific variability in synaptic GABAA receptor occupancy.

Hájos N, Nusser Z, Rancz EA, Freund TF, Mody I.

Eur J Neurosci. 2000 Mar;12(3):810-8.

PMID:
10762310
50.

Supplemental Content

Support Center