Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 51

1.

Complete Genome Sequence of Caloramator sp. Strain E03, a Novel Ethanologenic, Thermophilic, Obligately Anaerobic Bacterium.

Hatmaker EA, Klingeman DM, Martin RK, Guss AM, Elkins JG.

Microbiol Resour Announc. 2019 Aug 8;8(32). pii: e00708-19. doi: 10.1128/MRA.00708-19.

2.

Rational development of transformation in Clostridium thermocellum ATCC 27405 via complete methylome analysis and evasion of native restriction-modification systems.

Riley LA, Ji L, Schmitz RJ, Westpheling J, Guss AM.

J Ind Microbiol Biotechnol. 2019 Jul 24. doi: 10.1007/s10295-019-02218-x. [Epub ahead of print]

PMID:
31342224
3.

Complete Genome Sequences of Two Megasphaera elsdenii Strains, NCIMB 702410 and ATCC 25940.

Hatmaker EA, Klingeman DM, O'Dell KB, Riley LA, Papanek B, Guss AM.

Microbiol Resour Announc. 2019 Jan 17;8(3). pii: e01430-18. doi: 10.1128/MRA.01430-18. eCollection 2019 Jan.

4.

Complete Genome Sequence of Salinisphaera sp. Strain LB1, a Moderately Halo-Acidophilic Bacterium Isolated from Lake Brown, Western Australia.

O'Dell KB, Hatmaker EA, Guss AM, Mormile MR.

Microbiol Resour Announc. 2018 Oct 4;7(13). pii: e01047-18. doi: 10.1128/MRA.01047-18. eCollection 2018 Oct.

5.

Transcriptomic and proteomic changes from medium supplementation and strain evolution in high-yielding Clostridium thermocellum strains.

Papanek B, O'Dell KB, Manga P, Giannone RJ, Klingeman DM, Hettich RL, Brown SD, Guss AM.

J Ind Microbiol Biotechnol. 2018 Nov;45(11):1007-1015. doi: 10.1007/s10295-018-2073-x. Epub 2018 Sep 5.

PMID:
30187243
6.

An iterative computational design approach to increase the thermal endurance of a mesophilic enzyme.

Sammond DW, Kastelowitz N, Donohoe BS, Alahuhta M, Lunin VV, Chung D, Sarai NS, Yin H, Mittal A, Himmel ME, Guss AM, Bomble YJ.

Biotechnol Biofuels. 2018 Jul 9;11:189. doi: 10.1186/s13068-018-1178-9. eCollection 2018.

7.

Clostridium thermocellum LL1210 pH homeostasis mechanisms informed by transcriptomics and metabolomics.

Whitham JM, Moon JW, Rodriguez M Jr, Engle NL, Klingeman DM, Rydzak T, Abel MM, Tschaplinski TJ, Guss AM, Brown SD.

Biotechnol Biofuels. 2018 Apr 5;11:98. doi: 10.1186/s13068-018-1095-y. eCollection 2018.

8.

Insights into the Evolution of Host Association through the Isolation and Characterization of a Novel Human Periodontal Pathobiont, Desulfobulbus oralis.

Cross KL, Chirania P, Xiong W, Beall CJ, Elkins JG, Giannone RJ, Griffen AL, Guss AM, Hettich RL, Joshi SS, Mokrzan EM, Martin RK, Zhulin IB, Leys EJ, Podar M.

MBio. 2018 Mar 13;9(2). pii: e02061-17. doi: 10.1128/mBio.02061-17.

9.

Complete Genome Sequence of Industrial Dairy Strain Streptococcus thermophilus DGCC 7710.

Hatmaker EA, Riley LA, O'Dell KB, Papanek B, Graveley BR, Garrett SC, Wei Y, Terns MP, Guss AM.

Genome Announc. 2018 Feb 8;6(6). pii: e01587-17. doi: 10.1128/genomeA.01587-17.

10.

Complete Genome Sequence of Thermoanaerobacterium sp. Strain RBIITD, a Butyrate- and Butanol-Producing Thermophile.

Biswas R, Huntemann M, Clum A, Pillay M, Palaniappan K, Varghese N, Mikhailova N, Stamatis D, Reddy TBK, Daum C, Shapiro N, Ivanova N, Kyrpides NC, Woyke T, Guss AM.

Genome Announc. 2018 Jan 11;6(2). pii: e01411-17. doi: 10.1128/genomeA.01411-17.

11.

Development of a high efficiency integration system and promoter library for rapid modification of Pseudomonas putida KT2440.

Elmore JR, Furches A, Wolff GN, Gorday K, Guss AM.

Metab Eng Commun. 2017 Apr 15;5:1-8. doi: 10.1016/j.meteno.2017.04.001. eCollection 2017 Dec.

12.

Enhanced ethanol formation by Clostridium thermocellum via pyruvate decarboxylase.

Tian L, Perot SJ, Hon S, Zhou J, Liang X, Bouvier JT, Guss AM, Olson DG, Lynd LR.

Microb Cell Fact. 2017 Oct 4;16(1):171. doi: 10.1186/s12934-017-0783-9.

13.

Corrigendum: Pentose sugars inhibit metabolism and increase expression of an AgrD-type cyclic pentapeptide in Clostridium thermocellum.

Verbeke TJ, Giannone RJ, Klingeman DM, Engle NL, Rydzak T, Guss AM, Tschaplinski TJ, Brown SD, Hettich RL, Elkins JG.

Sci Rep. 2017 Jul 27;7:46875. doi: 10.1038/srep46875.

14.

Construction and Optimization of a Heterologous Pathway for Protocatechuate Catabolism in Escherichia coli Enables Bioconversion of Model Aromatic Compounds.

Clarkson SM, Giannone RJ, Kridelbaugh DM, Elkins JG, Guss AM, Michener JK.

Appl Environ Microbiol. 2017 Aug 31;83(18). pii: e01313-17. doi: 10.1128/AEM.01313-17. Print 2017 Sep 15.

15.

The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum.

Hon S, Olson DG, Holwerda EK, Lanahan AA, Murphy SJL, Maloney MI, Zheng T, Papanek B, Guss AM, Lynd LR.

Metab Eng. 2017 Jul;42:175-184. doi: 10.1016/j.ymben.2017.06.011. Epub 2017 Jun 27.

PMID:
28663138
16.

Deletion of Type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum.

Rydzak T, Garcia D, Stevenson DM, Sladek M, Klingeman DM, Holwerda EK, Amador-Noguez D, Brown SD, Guss AM.

Metab Eng. 2017 May;41:182-191. doi: 10.1016/j.ymben.2017.04.002. Epub 2017 Apr 8.

PMID:
28400329
17.

Pentose sugars inhibit metabolism and increase expression of an AgrD-type cyclic pentapeptide in Clostridium thermocellum.

Verbeke TJ, Giannone RJ, Klingeman DM, Engle NL, Rydzak T, Guss AM, Tschaplinski TJ, Brown SD, Hettich RL, Elkins JG.

Sci Rep. 2017 Feb 23;7:43355. doi: 10.1038/srep43355. Erratum in: Sci Rep. 2017 Jul 27;7:46875.

18.

Improved growth rate in Clostridium thermocellum hydrogenase mutant via perturbed sulfur metabolism.

Biswas R, Wilson CM, Giannone RJ, Klingeman DM, Rydzak T, Shah MB, Hettich RL, Brown SD, Guss AM.

Biotechnol Biofuels. 2017 Jan 3;10:6. doi: 10.1186/s13068-016-0684-x. eCollection 2017.

19.

LacI Transcriptional Regulatory Networks in Clostridium thermocellum DSM1313.

Wilson CM, Klingeman DM, Schlachter C, Syed MH, Wu CW, Guss AM, Brown SD.

Appl Environ Microbiol. 2017 Feb 15;83(5). pii: e02751-16. doi: 10.1128/AEM.02751-16. Print 2017 Mar 1.

20.

Engineering electron metabolism to increase ethanol production in Clostridium thermocellum.

Lo J, Olson DG, Murphy SJ, Tian L, Hon S, Lanahan A, Guss AM, Lynd LR.

Metab Eng. 2017 Jan;39:71-79. doi: 10.1016/j.ymben.2016.10.018. Epub 2016 Oct 28.

PMID:
27989806
21.

Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum.

Tian L, Papanek B, Olson DG, Rydzak T, Holwerda EK, Zheng T, Zhou J, Maloney M, Jiang N, Giannone RJ, Hettich RL, Guss AM, Lynd LR.

Biotechnol Biofuels. 2016 Jun 2;9:116. doi: 10.1186/s13068-016-0528-8. eCollection 2016.

22.

Promiscuous plasmid replication in thermophiles: Use of a novel hyperthermophilic replicon for genetic manipulation of Clostridium thermocellum at its optimum growth temperature.

Groom J, Chung D, Olson DG, Lynd LR, Guss AM, Westpheling J.

Metab Eng Commun. 2016 Jan 29;3:30-38. doi: 10.1016/j.meteno.2016.01.004. eCollection 2016 Dec.

23.

Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum.

Thompson RA, Layton DS, Guss AM, Olson DG, Lynd LR, Trinh CT.

Metab Eng. 2015 Nov;32:207-219. doi: 10.1016/j.ymben.2015.10.004. Epub 2015 Oct 21.

PMID:
26497628
24.

Cellulosic ethanol production via consolidated bioprocessing at 75 °C by engineered Caldicellulosiruptor bescii.

Chung D, Cha M, Snyder EN, Elkins JG, Guss AM, Westpheling J.

Biotechnol Biofuels. 2015 Oct 6;8:163. doi: 10.1186/s13068-015-0346-4. eCollection 2015.

25.

Correction for Lo et al., Deletion of nfnAB in Thermoanaerobacterium saccharolyticum and Its Effect on Metabolism.

Lo J, Zheng T, Olson DG, Ruppertsberger N, Tripathi SA, Tian L, Guss AM, Lynd LR.

J Bacteriol. 2015 Oct;197(20):3367. doi: 10.1128/JB.00688-15. No abstract available.

26.

Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum.

Papanek B, Biswas R, Rydzak T, Guss AM.

Metab Eng. 2015 Nov;32:49-54. doi: 10.1016/j.ymben.2015.09.002. Epub 2015 Sep 12.

PMID:
26369438
27.

Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum.

Lin PP, Mi L, Morioka AH, Yoshino KM, Konishi S, Xu SC, Papanek BA, Riley LA, Guss AM, Liao JC.

Metab Eng. 2015 Sep;31:44-52. doi: 10.1016/j.ymben.2015.07.001. Epub 2015 Jul 10.

PMID:
26170002
28.

Elimination of formate production in Clostridium thermocellum.

Rydzak T, Lynd LR, Guss AM.

J Ind Microbiol Biotechnol. 2015 Sep;42(9):1263-72. doi: 10.1007/s10295-015-1644-3. Epub 2015 Jul 11.

29.

Deletion of nfnAB in Thermoanaerobacterium saccharolyticum and Its Effect on Metabolism.

Lo J, Zheng T, Olson DG, Ruppertsberger N, Tripathi SA, Tian L, Guss AM, Lynd LR.

J Bacteriol. 2015 Sep;197(18):2920-9. doi: 10.1128/JB.00347-15. Epub 2015 Jun 29. Erratum in: J Bacteriol. 2015 Oct;197(20):3367. Tian, Liang [added].

30.

Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum.

Biswas R, Zheng T, Olson DG, Lynd LR, Guss AM.

Biotechnol Biofuels. 2015 Feb 12;8:20. doi: 10.1186/s13068-015-0204-4. eCollection 2015.

31.

Profile of secreted hydrolases, associated proteins, and SlpA in Thermoanaerobacterium saccharolyticum during the degradation of hemicellulose.

Currie DH, Guss AM, Herring CD, Giannone RJ, Johnson CM, Lankford PK, Brown SD, Hettich RL, Lynd LR.

Appl Environ Microbiol. 2014 Aug;80(16):5001-11. doi: 10.1128/AEM.00998-14. Epub 2014 Jun 6.

32.

Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii.

Chung D, Cha M, Guss AM, Westpheling J.

Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8931-6. doi: 10.1073/pnas.1402210111. Epub 2014 Jun 2.

33.

Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum.

Biswas R, Prabhu S, Lynd LR, Guss AM.

PLoS One. 2014 Feb 7;9(2):e86389. doi: 10.1371/journal.pone.0086389. eCollection 2014.

34.

Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass.

Cha M, Chung D, Elkins JG, Guss AM, Westpheling J.

Biotechnol Biofuels. 2013 Jun 3;6(1):85. doi: 10.1186/1754-6834-6-85.

35.

Characterization of Clostridium thermocellum strains with disrupted fermentation end-product pathways.

van der Veen D, Lo J, Brown SD, Johnson CM, Tschaplinski TJ, Martin M, Engle NL, van den Berg RA, Argyros AD, Caiazza NC, Guss AM, Lynd LR.

J Ind Microbiol Biotechnol. 2013 Jul;40(7):725-34. doi: 10.1007/s10295-013-1275-5. Epub 2013 May 5.

PMID:
23645383
36.

Functional heterologous expression of an engineered full length CipA from Clostridium thermocellum in Thermoanaerobacterium saccharolyticum.

Currie DH, Herring CD, Guss AM, Olson DG, Hogsett DA, Lynd LR.

Biotechnol Biofuels. 2013 Mar 1;6(1):32. doi: 10.1186/1754-6834-6-32.

37.

Exchange of type II dockerin-containing subunits of the Clostridium thermocellum cellulosome as revealed by SNAP-tags.

Waller BH, Olson DG, Currie DH, Guss AM, Lynd LR.

FEMS Microbiol Lett. 2013 Jan;338(1):46-53. doi: 10.1111/1574-6968.12029. Epub 2012 Nov 30.

38.

Characterization of xylan utilization and discovery of a new endoxylanase in Thermoanaerobacterium saccharolyticum through targeted gene deletions.

Podkaminer KK, Guss AM, Trajano HL, Hogsett DA, Lynd LR.

Appl Environ Microbiol. 2012 Dec;78(23):8441-7. doi: 10.1128/AEM.02130-12. Epub 2012 Sep 28.

39.

Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum.

Guss AM, Olson DG, Caiazza NC, Lynd LR.

Biotechnol Biofuels. 2012 May 6;5(1):30. doi: 10.1186/1754-6834-5-30.

40.

Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations.

Li Y, Tschaplinski TJ, Engle NL, Hamilton CY, Rodriguez M Jr, Liao JC, Schadt CW, Guss AM, Yang Y, Graham DE.

Biotechnol Biofuels. 2012 Jan 4;5(1):2. doi: 10.1186/1754-6834-5-2.

41.

Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum.

Shao X, Raman B, Zhu M, Mielenz JR, Brown SD, Guss AM, Lynd LR.

Appl Microbiol Biotechnol. 2011 Nov;92(3):641-52. doi: 10.1007/s00253-011-3492-z. Epub 2011 Aug 27.

PMID:
21874277
42.

Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum.

Brown SD, Guss AM, Karpinets TV, Parks JM, Smolin N, Yang S, Land ML, Klingeman DM, Bhandiwad A, Rodriguez M Jr, Raman B, Shao X, Mielenz JR, Smith JC, Keller M, Lynd LR.

Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13752-7. doi: 10.1073/pnas.1102444108. Epub 2011 Aug 8.

43.

Deletion of the Cel48S cellulase from Clostridium thermocellum.

Olson DG, Tripathi SA, Giannone RJ, Lo J, Caiazza NC, Hogsett DA, Hettich RL, Guss AM, Dubrovsky G, Lynd LR.

Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17727-32. doi: 10.1073/pnas.1003584107. Epub 2010 Sep 13.

44.

Phylogenetic and metabolic diversity of bacteria associated with cystic fibrosis.

Guss AM, Roeselers G, Newton IL, Young CR, Klepac-Ceraj V, Lory S, Cavanaugh CM.

ISME J. 2011 Jan;5(1):20-9. doi: 10.1038/ismej.2010.88. Epub 2010 Jul 15.

45.

Hydrogen is a preferred intermediate in the energy-conserving electron transport chain of Methanosarcina barkeri.

Kulkarni G, Kridelbaugh DM, Guss AM, Metcalf WW.

Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15915-20. doi: 10.1073/pnas.0905914106. Epub 2009 Sep 1.

46.

Differences in hydrogenase gene expression between Methanosarcina acetivorans and Methanosarcina barkeri.

Guss AM, Kulkarni G, Metcalf WW.

J Bacteriol. 2009 Apr;191(8):2826-33. doi: 10.1128/JB.00563-08. Epub 2009 Feb 6.

47.
48.
50.

Supplemental Content

Support Center