Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 45

1.

Mathematical assessment of the role of vector insecticide resistance and feeding/resting behavior on malaria transmission dynamics: Optimal control analysis.

Mohammed-Awel J, Agusto F, Mickens RE, Gumel AB.

Infect Dis Model. 2018 Nov 2;3:301-321. doi: 10.1016/j.idm.2018.10.003. eCollection 2018.

2.

Mathematics of dengue transmission dynamics: Roles of vector vertical transmission and temperature fluctuations.

Taghikhani R, Gumel AB.

Infect Dis Model. 2018 Oct 28;3:266-292. doi: 10.1016/j.idm.2018.09.003. eCollection 2018.

3.

Modeling the impact of quarantine during an outbreak of Ebola virus disease.

Dénes A, Gumel AB.

Infect Dis Model. 2019 Feb 5;4:12-27. doi: 10.1016/j.idm.2019.01.003. eCollection 2019.

4.

Mathematics of an epidemiology-genetics model for assessing the role of insecticides resistance on malaria transmission dynamics.

Mohammed-Awel J, Gumel AB.

Math Biosci. 2019 Jun;312:33-49. doi: 10.1016/j.mbs.2019.02.008. Epub 2019 Feb 27.

PMID:
30825481
5.

Weather-driven malaria transmission model with gonotrophic and sporogonic cycles.

Okuneye K, Eikenberry SE, Gumel AB.

J Biol Dyn. 2019 Jan 28:1-37. doi: 10.1080/17513758.2019.1570363. [Epub ahead of print]

PMID:
30691351
6.

Mathematical analysis of a model for zoonotic visceral leishmaniasis.

Hussaini N, Okuneye K, Gumel AB.

Infect Dis Model. 2017 Dec 13;2(4):455-474. doi: 10.1016/j.idm.2017.12.002. eCollection 2017 Nov.

7.

Mathematical assessment of the role of Dengvaxia vaccine on the transmission dynamics of dengue serotypes.

Iboi EA, Gumel AB.

Math Biosci. 2018 Oct;304:25-47. doi: 10.1016/j.mbs.2018.07.003. Epub 2018 Jul 17.

PMID:
30025788
8.

Mathematical Assessment of the Role of Early Latent Infections and Targeted Control Strategies on Syphilis Transmission Dynamics.

Okuonghae D, Gumel AB, Ikhimwin BO, Iboi E.

Acta Biotheor. 2019 Mar;67(1):47-84. doi: 10.1007/s10441-018-9336-9. Epub 2018 Jul 3.

PMID:
29971669
9.

Mathematical modeling of climate change and malaria transmission dynamics: a historical review.

Eikenberry SE, Gumel AB.

J Math Biol. 2018 Oct;77(4):857-933. doi: 10.1007/s00285-018-1229-7. Epub 2018 Apr 24. Review.

PMID:
29691632
10.

Comments on "A Mathematical Study to Control Visceral Leishmaniasis: An Application to South Sudan".

Iboi E, Okuneye K, Sharomi O, Gumel AB.

Bull Math Biol. 2018 Apr;80(4):825-839. doi: 10.1007/s11538-018-0403-9. Epub 2018 Feb 16.

PMID:
29453666
11.

Sex-biased prevalence in infections with heterosexual, direct, and vector-mediated transmission: A theoretical analysis.

Pugliese A, Gumel AB, Milner FA, Velasco-Hernandez JX.

Math Biosci Eng. 2018 Feb 1;15(1):125-140. doi: 10.3934/mbe.2018005.

12.

Mathematical analysis of a weather-driven model for the population ecology of mosquitoes.

Okuneye K, Abdelrazec A, Gumel AB.

Math Biosci Eng. 2018 Feb 1;15(1):57-93. doi: 10.3934/mbe.2018003.

13.

Mathematical assessment of the role of temperature and rainfall on mosquito population dynamics.

Abdelrazec A, Gumel AB.

J Math Biol. 2017 May;74(6):1351-1395. doi: 10.1007/s00285-016-1054-9. Epub 2016 Sep 19.

PMID:
27647127
14.

Analysis of a temperature- and rainfall-dependent model for malaria transmission dynamics.

Okuneye K, Gumel AB.

Math Biosci. 2017 May;287:72-92. doi: 10.1016/j.mbs.2016.03.013. Epub 2016 Apr 21.

PMID:
27107977
15.

Mathematical analysis of a model for AVL-HIV co-endemicity.

Hussaini N, Lubuma JM, Barley K, Gumel AB.

Math Biosci. 2016 Jan;271:80-95. doi: 10.1016/j.mbs.2015.10.008. Epub 2015 Oct 24.

PMID:
26596715
16.

Mathematical assessment of the effect of traditional beliefs and customs on the transmission dynamics of the 2014 Ebola outbreaks.

Agusto FB, Teboh-Ewungkem MI, Gumel AB.

BMC Med. 2015 Apr 23;13:96. doi: 10.1186/s12916-015-0318-3.

17.

Differential characteristics of primary infection and re-infection can cause backward bifurcation in HCV transmission dynamics.

Nazari F, Gumel AB, Elbasha EH.

Math Biosci. 2015 May;263:51-69. doi: 10.1016/j.mbs.2015.02.002. Epub 2015 Feb 14.

PMID:
25686692
18.

Dynamics of Mycobacterium and bovine tuberculosis in a human-buffalo population.

Hassan AS, Garba SM, Gumel AB, Lubuma JM.

Comput Math Methods Med. 2014;2014:912306. doi: 10.1155/2014/912306. Epub 2014 Sep 2.

19.

Analysis of risk-structured vaccination model for the dynamics of oncogenic and warts-causing HPV types.

Alsaleh AA, Gumel AB.

Bull Math Biol. 2014 Jul;76(7):1670-726. doi: 10.1007/s11538-014-9972-4. Epub 2014 Jul 18.

PMID:
25033777
20.

Mathematical analysis of an age-structured model for malaria transmission dynamics.

Forouzannia F, Gumel AB.

Math Biosci. 2014 Jan;247:80-94. doi: 10.1016/j.mbs.2013.10.011. Epub 2013 Nov 15.

PMID:
24239674
21.

Dynamics analysis of a multi-strain cholera model with an imperfect vaccine.

Safi MA, Melesse DY, Gumel AB.

Bull Math Biol. 2013 Jul;75(7):1104-37. doi: 10.1007/s11538-013-9845-2. Epub 2013 May 1.

PMID:
23636819
22.

Qualitative dynamics of lowly- and highly-pathogenic avian influenza strains.

Agusto FB, Gumel AB.

Math Biosci. 2013 Jun;243(2):147-62. doi: 10.1016/j.mbs.2013.02.001. Epub 2013 Feb 26.

PMID:
23485554
23.

Threshold dynamics of a non-autonomous SEIRS model with quarantine and isolation.

Safi MA, Imran M, Gumel AB.

Theory Biosci. 2012 May;131(1):19-30. doi: 10.1007/s12064-011-0148-6. Epub 2012 Jan 6.

PMID:
22222764
24.

Qualitative assessment of the role of public health education program on HIV transmission dynamics.

Hussaini N, Winter M, Gumel AB.

Math Med Biol. 2011 Sep;28(3):245-70. doi: 10.1093/imammb/dqq009. Epub 2010 May 20.

PMID:
20488880
25.

Modelling the transmission dynamics and control of the novel 2009 swine influenza (H1N1) pandemic.

Sharomi O, Podder CN, Gumel AB, Mahmud SM, Rubinstein E.

Bull Math Biol. 2011 Mar;73(3):515-48. doi: 10.1007/s11538-010-9538-z. Epub 2010 Apr 9.

PMID:
20379852
26.

Backward bifurcation and optimal control in transmission dynamics of west nile virus.

Blayneh KW, Gumel AB, Lenhart S, Clayton T.

Bull Math Biol. 2010 May;72(4):1006-28. doi: 10.1007/s11538-009-9480-0. Epub 2010 Jan 7.

PMID:
20054714
27.

Mathematical study of the role of gametocytes and an imperfect vaccine on malaria transmission dynamics.

Teboh-Ewungkem MI, Podder CN, Gumel AB.

Bull Math Biol. 2010 Jan;72(1):63-93. doi: 10.1007/s11538-009-9437-3. Epub 2009 Jul 1.

PMID:
19568725
28.

Mathematical analysis of a model for HIV-malaria co-infection.

Mukandavire Z, Gumel AB, Garira W, Tchuenche JM.

Math Biosci Eng. 2009 Apr;6(2):333-62.

PMID:
19364156
29.

Mathematical assessment of Canada's pandemic influenza preparedness plan.

Gumel AB, Nuño M, Chowell G.

Can J Infect Dis Med Microbiol. 2008 Mar;19(2):185-92.

30.

Protecting residential care facilities from pandemic influenza.

Nuño M, Reichert TA, Chowell G, Gumel AB.

Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10625-30. doi: 10.1073/pnas.0712014105. Epub 2008 Jul 22.

31.
32.

Dynamical analysis of a multi-strain model of HIV in the presence of anti-retroviral drugs.

Sharomi O, Gumel AB.

J Biol Dyn. 2008 Jul;2(3):323-45. doi: 10.1080/17513750701775599.

PMID:
22876872
33.

Backward bifurcations in dengue transmission dynamics.

Garba SM, Gumel AB, Abu Bakar MR.

Math Biosci. 2008 Sep;215(1):11-25. doi: 10.1016/j.mbs.2008.05.002. Epub 2008 May 20.

PMID:
18573507
34.

Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment.

Sharomi O, Podder CN, Gumel AB, Song B.

Math Biosci Eng. 2008 Jan;5(1):145-74.

PMID:
18193936
35.

Role of incidence function in vaccine-induced backward bifurcation in some HIV models.

Sharomi O, Podder CN, Gumel AB, Elbasha EH, Watmough J.

Math Biosci. 2007 Dec;210(2):436-63. Epub 2007 Jul 4.

PMID:
17707441
36.

To cut or not to cut: a modeling approach for assessing the role of male circumcision in HIV control.

Podder CN, Sharomi O, Gumel AB, Moses S.

Bull Math Biol. 2007 Nov;69(8):2447-66. Epub 2007 Jun 8.

PMID:
17557187
38.

Mathematical study of a staged-progression HIV model with imperfect vaccine.

Gumel AB, McCluskey CC, van den Driessche P.

Bull Math Biol. 2006 Nov;68(8):2105-28. Epub 2006 Jul 26.

PMID:
16868850
39.

Sensitivity and uncertainty analyses for a sars model with time-varying inputs and outputs.

McLeod RG, Brewster JF, Gumel AB, Slonowsky DA.

Math Biosci Eng. 2006 Jul;3(3):527-44.

PMID:
20210378
40.

An sveir model for assessing potential impact of an imperfect anti-sars vaccine.

Gumel AB, McCluskey CC, Watmough J.

Math Biosci Eng. 2006 Jul;3(3):485-512.

PMID:
20210376
41.

Theoretical assessment of public health impact of imperfect prophylactic HIV-1 vaccines with therapeutic benefits.

Elbasha EH, Gumel AB.

Bull Math Biol. 2006 Apr;68(3):577-614. Epub 2006 Apr 7.

PMID:
16794946
42.

A mathematical model for assessing control strategies against West Nile virus.

Bowman C, Gumel AB, van den Driessche P, Wu J, Zhu H.

Bull Math Biol. 2005 Sep;67(5):1107-33.

PMID:
15998497
43.

Modelling strategies for controlling SARS outbreaks.

Gumel AB, Ruan S, Day T, Watmough J, Brauer F, van den Driessche P, Gabrielson D, Bowman C, Alexander ME, Ardal S, Wu J, Sahai BM.

Proc Biol Sci. 2004 Nov 7;271(1554):2223-32.

44.

Numerical modelling of the perturbation of HIV-1 during combination anti-retroviral therapy.

Gumel AB, Loewen TD, Shivakumar PN, Sahai BM, Yu P, Garba ML.

Comput Biol Med. 2001 Sep;31(5):287-301.

PMID:
11535198
45.

A sequential algorithm for the non-linear dual-sorption model of percutaneous drug absorption.

Gumel AB, Kubota K, Twizell EH.

Math Biosci. 1998 Aug 15;152(1):87-103.

PMID:
9727298

Supplemental Content

Loading ...
Support Center