Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 9

1.

MEK inhibition induces MYOG and remodels super-enhancers in RAS-driven rhabdomyosarcoma.

Yohe ME, Gryder BE, Shern JF, Song YK, Chou HC, Sindiri S, Mendoza A, Patidar R, Zhang X, Guha R, Butcher D, Isanogle KA, Robinson CM, Luo X, Chen JQ, Walton A, Awasthi P, Edmondson EF, Difilippantonio S, Wei JS, Zhao K, Ferrer M, Thomas CJ, Khan J.

Sci Transl Med. 2018 Jul 4;10(448). pii: eaan4470. doi: 10.1126/scitranslmed.aan4470.

PMID:
29973406
2.

EWS-FLI1 reprograms the metabolism of Ewing sarcoma cells via positive regulation of glutamine import and serine-glycine biosynthesis.

Sen N, Cross AM, Lorenzi PL, Khan J, Gryder BE, Kim S, Caplen NJ.

Mol Carcinog. 2018 Oct;57(10):1342-1357. doi: 10.1002/mc.22849. Epub 2018 Jun 19.

3.

Functional screening of FGFR4-driven tumorigenesis identifies PI3K/mTOR inhibition as a therapeutic strategy in rhabdomyosarcoma.

McKinnon T, Venier R, Yohe M, Sindiri S, Gryder BE, Shern JF, Kabaroff L, Dickson B, Schleicher K, Chouinard-Pelletier G, Menezes S, Gupta A, Zhang X, Guha R, Ferrer M, Thomas CJ, Wei Y, Davani D, Guidos CJ, Khan J, Gladdy RA.

Oncogene. 2018 May;37(20):2630-2644. doi: 10.1038/s41388-017-0122-y. Epub 2018 Feb 28.

PMID:
29487419
4.

PAX3-FOXO1 Establishes Myogenic Super Enhancers and Confers BET Bromodomain Vulnerability.

Gryder BE, Yohe ME, Chou HC, Zhang X, Marques J, Wachtel M, Schaefer B, Sen N, Song Y, Gualtieri A, Pomella S, Rota R, Cleveland A, Wen X, Sindiri S, Wei JS, Barr FG, Das S, Andresson T, Guha R, Lal-Nag M, Ferrer M, Shern JF, Zhao K, Thomas CJ, Khan J.

Cancer Discov. 2017 Aug;7(8):884-899. doi: 10.1158/2159-8290.CD-16-1297. Epub 2017 Apr 26.

5.

Aurora B kinase is a potent and selective target in MYCN-driven neuroblastoma.

Bogen D, Wei JS, Azorsa DO, Ormanoglu P, Buehler E, Guha R, Keller JM, Mathews Griner LA, Ferrer M, Song YK, Liao H, Mendoza A, Gryder BE, Sindri S, He J, Wen X, Zhang S, Shern JF, Yohe ME, Taschner-Mandl S, Shohet JM, Thomas CJ, Martin SE, Ambros PF, Khan J.

Oncotarget. 2015 Nov 3;6(34):35247-62. doi: 10.18632/oncotarget.6208.

6.

Selectively targeting prostate cancer with antiandrogen equipped histone deacetylase inhibitors.

Gryder BE, Akbashev MJ, Rood MK, Raftery ED, Meyers WM, Dillard P, Khan S, Oyelere AK.

ACS Chem Biol. 2013 Nov 15;8(11):2550-60. doi: 10.1021/cb400542w. Epub 2013 Sep 20.

7.

Histone deacetylase inhibitors equipped with estrogen receptor modulation activity.

Gryder BE, Rood MK, Johnson KA, Patil V, Raftery ED, Yao LP, Rice M, Azizi B, Doyle DF, Oyelere AK.

J Med Chem. 2013 Jul 25;56(14):5782-96. doi: 10.1021/jm400467w. Epub 2013 Jul 3.

8.

Antiandrogen gold nanoparticles dual-target and overcome treatment resistance in hormone-insensitive prostate cancer cells.

Dreaden EC, Gryder BE, Austin LA, Tene Defo BA, Hayden SC, Pi M, Quarles LD, Oyelere AK, El-Sayed MA.

Bioconjug Chem. 2012 Aug 15;23(8):1507-12. doi: 10.1021/bc300158k. Epub 2012 Jul 12.

9.

Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed.

Gryder BE, Sodji QH, Oyelere AK.

Future Med Chem. 2012 Mar;4(4):505-24. doi: 10.4155/fmc.12.3. Review. Erratum in: Future Med Chem. 2012 Jun;4(10):1369-70.

Supplemental Content

Loading ...
Support Center