Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 54

1.

let-7 coordinates the transition to adulthood through a single primary and four secondary targets.

Aeschimann F, Neagu A, Rausch M, Großhans H.

Life Sci Alliance. 2019 Mar 25;2(2). pii: e201900335. doi: 10.26508/lsa.201900335. Print 2019 Apr.

2.

Timing mechanism of sexually dimorphic nervous system differentiation.

Pereira L, Aeschimann F, Wang C, Lawson H, Serrano-Saiz E, Portman DS, Großhans H, Hobert O.

Elife. 2019 Jan 1;8. pii: e42078. doi: 10.7554/eLife.42078.

3.

Neuronal calcium sensor 1 (NCS1) promotes motility and metastatic spread of breast cancer cells in vitro and in vivo.

Apasu JE, Schuette D, LaRanger R, Steinle JA, Nguyen LD, Grosshans HK, Zhang M, Cai WL, Yan Q, Robert ME, Mak M, Ehrlich BE.

FASEB J. 2019 Apr;33(4):4802-4813. doi: 10.1096/fj.201802004R. Epub 2018 Dec 28.

PMID:
30592625
4.

An interplay of miRNA abundance and target site architecture determines miRNA activity and specificity.

Brancati G, Großhans H.

Nucleic Acids Res. 2018 Apr 20;46(7):3259-3269. doi: 10.1093/nar/gky201.

5.

Evolutionary plasticity of the NHL domain underlies distinct solutions to RNA recognition.

Kumari P, Aeschimann F, Gaidatzis D, Keusch JJ, Ghosh P, Neagu A, Pachulska-Wieczorek K, Bujnicki JM, Gut H, Großhans H, Ciosk R.

Nat Commun. 2018 Apr 19;9(1):1549. doi: 10.1038/s41467-018-03920-7.

6.

Turning the table on miRNAs.

de la Mata M, Großhans H.

Nat Struct Mol Biol. 2018 Mar;25(3):195-197. doi: 10.1038/s41594-018-0040-x. No abstract available.

PMID:
29507401
7.

Two distinct transcription termination modes dictated by promoters.

Miki TS, Carl SH, Großhans H.

Genes Dev. 2017 Sep 15;31(18):1870-1879. doi: 10.1101/gad.301093.117. Epub 2017 Oct 11.

8.

Bayesian prediction of RNA translation from ribosome profiling.

Malone B, Atanassov I, Aeschimann F, Li X, Großhans H, Dieterich C.

Nucleic Acids Res. 2017 Apr 7;45(6):2960-2972. doi: 10.1093/nar/gkw1350.

9.

LIN41 Post-transcriptionally Silences mRNAs by Two Distinct and Position-Dependent Mechanisms.

Aeschimann F, Kumari P, Bartake H, Gaidatzis D, Xu L, Ciosk R, Großhans H.

Mol Cell. 2017 Feb 2;65(3):476-489.e4. doi: 10.1016/j.molcel.2016.12.010. Epub 2017 Jan 19.

10.

XRN2 Autoregulation and Control of Polycistronic Gene Expresssion in Caenorhabditis elegans.

Miki TS, Carl SH, Stadler MB, Großhans H.

PLoS Genet. 2016 Sep 15;12(9):e1006313. doi: 10.1371/journal.pgen.1006313. eCollection 2016 Sep.

11.

Structural basis and function of XRN2 binding by XTB domains.

Richter H, Katic I, Gut H, Großhans H.

Nat Struct Mol Biol. 2016 Feb;23(2):164-71. doi: 10.1038/nsmb.3155. Epub 2016 Jan 18.

12.

Transcriptome-wide measurement of ribosomal occupancy by ribosome profiling.

Aeschimann F, Xiong J, Arnold A, Dieterich C, Großhans H.

Methods. 2015 Sep 1;85:75-89. doi: 10.1016/j.ymeth.2015.06.013. Epub 2015 Jun 20.

PMID:
26102273
13.

The ribonucleotidyl transferase USIP-1 acts with SART3 to promote U6 snRNA recycling.

Rüegger S, Miki TS, Hess D, Großhans H.

Nucleic Acids Res. 2015 Mar 31;43(6):3344-57. doi: 10.1093/nar/gkv196. Epub 2015 Mar 9.

14.

A genetic interactome of the let-7 microRNA in C. elegans.

Rausch M, Ecsedi M, Bartake H, Müllner A, Grosshans H.

Dev Biol. 2015 May 15;401(2):276-86. doi: 10.1016/j.ydbio.2015.02.013. Epub 2015 Feb 27.

15.

Potent degradation of neuronal miRNAs induced by highly complementary targets.

de la Mata M, Gaidatzis D, Vitanescu M, Stadler MB, Wentzel C, Scheiffele P, Filipowicz W, Großhans H.

EMBO Rep. 2015 Apr;16(4):500-11. doi: 10.15252/embr.201540078. Epub 2015 Feb 27.

16.

The let-7 microRNA directs vulval development through a single target.

Ecsedi M, Rausch M, Großhans H.

Dev Cell. 2015 Feb 9;32(3):335-44. doi: 10.1016/j.devcel.2014.12.018.

17.

PAXT-1 promotes XRN2 activity by stabilizing it through a conserved domain.

Miki TS, Richter H, Rüegger S, Großhans H.

Mol Cell. 2014 Jan 23;53(2):351-60. doi: 10.1016/j.molcel.2014.01.001.

18.

Engineering of a conditional allele reveals multiple roles of XRN2 in Caenorhabditis elegans development and substrate specificity in microRNA turnover.

Miki TS, Rüegger S, Gaidatzis D, Stadler MB, Großhans H.

Nucleic Acids Res. 2014 Apr;42(6):4056-67. doi: 10.1093/nar/gkt1418. Epub 2014 Jan 20.

19.

Extensive oscillatory gene expression during C. elegans larval development.

Hendriks GJ, Gaidatzis D, Aeschimann F, Großhans H.

Mol Cell. 2014 Feb 6;53(3):380-92. doi: 10.1016/j.molcel.2013.12.013. Epub 2014 Jan 16.

20.

Targeted heritable mutation and gene conversion by Cas9-CRISPR in Caenorhabditis elegans.

Katic I, Großhans H.

Genetics. 2013 Nov;195(3):1173-6. doi: 10.1534/genetics.113.155754. Epub 2013 Aug 26.

21.

The multifunctional RNase XRN2.

Miki TS, Großhans H.

Biochem Soc Trans. 2013 Aug;41(4):825-30. doi: 10.1042/BST20130001. Review.

PMID:
23863139
22.

The decapping scavenger enzyme DCS-1 controls microRNA levels in Caenorhabditis elegans.

Bossé GD, Rüegger S, Ow MC, Vasquez-Rifo A, Rondeau EL, Ambros VR, Grosshans H, Simard MJ.

Mol Cell. 2013 Apr 25;50(2):281-7. doi: 10.1016/j.molcel.2013.02.023. Epub 2013 Mar 28.

23.

LIN-41/TRIM71: emancipation of a miRNA target.

Ecsedi M, Grosshans H.

Genes Dev. 2013 Mar 15;27(6):581-9. doi: 10.1101/gad.207266.112. Review.

24.

MicroRNA turnover: when, how, and why.

Rüegger S, Großhans H.

Trends Biochem Sci. 2012 Oct;37(10):436-46. doi: 10.1016/j.tibs.2012.07.002. Epub 2012 Aug 23. Review.

PMID:
22921610
25.

MicroRNases and the Regulated Degradation of Mature Animal miRNAs.

Großhans H, Chatterjee S.

Adv Exp Med Biol. 2011;700:140-55.

PMID:
21755479
26.

The type II poly(A)-binding protein PABP-2 genetically interacts with the let-7 miRNA and elicits heterochronic phenotypes in Caenorhabditis elegans.

Hurschler BA, Harris DT, Grosshans H.

Nucleic Acids Res. 2011 Jul;39(13):5647-57. doi: 10.1093/nar/gkr145. Epub 2011 Mar 16.

27.

Target-mediated protection of endogenous microRNAs in C. elegans.

Chatterjee S, Fasler M, Büssing I, Grosshans H.

Dev Cell. 2011 Mar 15;20(3):388-96. doi: 10.1016/j.devcel.2011.02.008.

28.

The liver-specific microRNA miR-122: biology and therapeutic potential.

Filipowicz W, Grosshans H.

Prog Drug Res. 2011;67:221-38. Review.

PMID:
21141732
29.

MicroRNA biogenesis takes another single hit from microsatellite instability.

Grosshans H, Büssing I.

Cancer Cell. 2010 Oct 19;18(4):295-7. doi: 10.1016/j.ccr.2010.10.005.

30.

A quantitative targeted proteomics approach to validate predicted microRNA targets in C. elegans.

Jovanovic M, Reiter L, Picotti P, Lange V, Bogan E, Hurschler BA, Blenkiron C, Lehrbach NJ, Ding XC, Weiss M, Schrimpf SP, Miska EA, Grosshans H, Aebersold R, Hengartner MO.

Nat Methods. 2010 Oct;7(10):837-42. doi: 10.1038/nmeth.1504. Epub 2010 Sep 12.

31.

The nuclear export receptor XPO-1 supports primary miRNA processing in C. elegans and Drosophila.

Büssing I, Yang JS, Lai EC, Grosshans H.

EMBO J. 2010 Jun 2;29(11):1830-9. doi: 10.1038/emboj.2010.82. Epub 2010 Apr 30.

32.

MicroRNAses and the regulated degradation of mature animal miRNAs.

Grosshans H, Chatterjee S.

Adv Exp Med Biol. 2010;700:140-55. Review.

PMID:
21627036
33.

Regulation of microRNAs. Preface.

Grosshans H.

Adv Exp Med Biol. 2010;700:v-vi. No abstract available.

PMID:
21627024
34.

Translational control of endogenous microRNA target genes in C. elegans.

Hurschler BA, Ding XC, Grosshans H.

Prog Mol Subcell Biol. 2010;50:21-40. doi: 10.1007/978-3-642-03103-8_2. Review.

PMID:
19841879
35.

Active turnover modulates mature microRNA activity in Caenorhabditis elegans.

Chatterjee S, Grosshans H.

Nature. 2009 Sep 24;461(7263):546-9. doi: 10.1038/nature08349. Epub 2009 Sep 6.

PMID:
19734881
36.

Repression of C. elegans microRNA targets at the initiation level of translation requires GW182 proteins.

Ding XC, Grosshans H.

EMBO J. 2009 Feb 4;28(3):213-22. doi: 10.1038/emboj.2008.275. Epub 2009 Jan 8.

37.

Regulating the regulators: mechanisms controlling the maturation of microRNAs.

Ding XC, Weiler J, Grosshans H.

Trends Biotechnol. 2009 Jan;27(1):27-36. doi: 10.1016/j.tibtech.2008.09.006. Epub 2008 Nov 13. Review.

PMID:
19012978
38.

The let-7 microRNA interfaces extensively with the translation machinery to regulate cell differentiation.

Ding XC, Slack FJ, Grosshans H.

Cell Cycle. 2008 Oct;7(19):3083-90. Epub 2008 Oct 12.

39.

Proteomics joins the search for microRNA targets.

Grosshans H, Filipowicz W.

Cell. 2008 Aug 22;134(4):560-2. doi: 10.1016/j.cell.2008.08.008.

40.

let-7 microRNAs in development, stem cells and cancer.

Büssing I, Slack FJ, Grosshans H.

Trends Mol Med. 2008 Sep;14(9):400-9. doi: 10.1016/j.molmed.2008.07.001. Epub 2008 Jul 31. Review.

PMID:
18674967
41.

Molecular biology: the expanding world of small RNAs.

Grosshans H, Filipowicz W.

Nature. 2008 Jan 24;451(7177):414-6. doi: 10.1038/451414a. No abstract available.

PMID:
18216846
42.

miRNA, piRNA, siRNA -- Kleine Wiener Ribonukleinsäuren.

Grosshans H, Svoboda P.

Bioessays. 2007 Sep;29(9):940-3. No abstract available.

PMID:
17688276
43.

RAS is regulated by the let-7 microRNA family.

Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ.

Cell. 2005 Mar 11;120(5):635-47.

44.

The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans.

Grosshans H, Johnson T, Reinert KL, Gerstein M, Slack FJ.

Dev Cell. 2005 Mar;8(3):321-30.

45.

Formation and nuclear export of tRNA, rRNA and mRNA is regulated by the ubiquitin ligase Rsp5p.

Neumann S, Petfalski E, Brügger B, Grosshans H, Wieland F, Tollervey D, Hurt E.

EMBO Rep. 2003 Dec;4(12):1156-62. Epub 2003 Nov 7.

46.

Gene therapy--when a simple concept meets a complex reality. Review on gene therapy.

Grosshans H.

Funct Integr Genomics. 2000 Sep;1(2):142-5. Review.

PMID:
11793230
47.

Nuclear export of tRNA.

Simos G, Grosshans H, Hurt E.

Results Probl Cell Differ. 2002;35:115-31. Review. No abstract available.

PMID:
11791403
48.

Micro-RNAs: small is plentiful.

Grosshans H, Slack FJ.

J Cell Biol. 2002 Jan 7;156(1):17-21. Epub 2002 Jan 7. Review.

49.

The intracellular location of two aminoacyl-tRNA synthetases depends on complex formation with Arc1p.

Galani K, Grosshans H, Deinert K, Hurt EC, Simos G.

EMBO J. 2001 Dec 3;20(23):6889-98.

50.

Pus1p-dependent tRNA pseudouridinylation becomes essential when tRNA biogenesis is compromised in yeast.

Grosshans H, Lecointe F, Grosjean H, Hurt E, Simos G.

J Biol Chem. 2001 Dec 7;276(49):46333-9. Epub 2001 Sep 24.

Supplemental Content

Loading ...
Support Center