Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 50

1.

How a Genetically Stable Extremophile Evolves: Modes of Genome Diversification in the Archaeon Sulfolobus acidocaldarius.

Mao D, Grogan DW.

J Bacteriol. 2017 Aug 8;199(17). pii: e00177-17. doi: 10.1128/JB.00177-17. Print 2017 Sep 1.

2.

Mutations to Less-Preferred Synonymous Codons in a Highly Expressed Gene of Escherichia coli: Fitness and Epistatic Interactions.

Hauber DJ, Grogan DW, DeBry RW.

PLoS One. 2016 Jan 4;11(1):e0146375. doi: 10.1371/journal.pone.0146375. eCollection 2016.

3.

Lesion-Induced Mutation in the Hyperthermophilic Archaeon Sulfolobus acidocaldarius and Its Avoidance by the Y-Family DNA Polymerase Dbh.

Sakofsky CJ, Grogan DW.

Genetics. 2015 Oct;201(2):513-23. doi: 10.1534/genetics.115.178566. Epub 2015 Jul 29.

4.

Understanding DNA Repair in Hyperthermophilic Archaea: Persistent Gaps and Other Reasons to Focus on the Fork.

Grogan DW.

Archaea. 2015 Jun 4;2015:942605. doi: 10.1155/2015/942605. eCollection 2015. Review.

5.

Rolf Bernander (1956-2014): pioneer of the archaeal cell cycle.

Ettema TJ, Lindås AC, Hjort K, Poplawski AB, Kaessmann H, Grogan DW, Kelman Z, Andersson AF, Pelve EA, Lundgren M, Svärd SG.

Mol Microbiol. 2014 Jun;92(5):903-9. doi: 10.1111/mmi.12608. Erratum in: Mol Microbiol. 2014 Aug;93(3):582.

6.

Confounders of mutation-rate estimators: selection and phenotypic lag in Thermus thermophilus.

Kissling GE, Grogan DW, Drake JW.

Mutat Res. 2013 Sep;749(1-2):16-20. doi: 10.1016/j.mrfmmm.2013.07.006. Epub 2013 Aug 2. Review.

7.

Homologous recombination in the archaeon Sulfolobus acidocaldarius: effects of DNA substrates and mechanistic implications.

Rockwood J, Mao D, Grogan DW.

Microbiology. 2013 Sep;159(Pt 9):1888-99. doi: 10.1099/mic.0.067942-0. Epub 2013 Jul 7.

PMID:
23832004
8.

Endogenous mutagenesis in recombinant sulfolobus plasmids.

Sakofsky CJ, Grogan DW.

J Bacteriol. 2013 Jun;195(12):2776-85. doi: 10.1128/JB.00223-13. Epub 2013 Apr 5.

9.
10.

Roles of the Y-family DNA polymerase Dbh in accurate replication of the Sulfolobus genome at high temperature.

Sakofsky CJ, Foster PL, Grogan DW.

DNA Repair (Amst). 2012 Apr 1;11(4):391-400. doi: 10.1016/j.dnarep.2012.01.005. Epub 2012 Feb 4.

11.

UV-inducible DNA exchange in hyperthermophilic archaea mediated by type IV pili.

Ajon M, Fröls S, van Wolferen M, Stoecker K, Teichmann D, Driessen AJ, Grogan DW, Albers SV, Schleper C.

Mol Microbiol. 2011 Nov;82(4):807-17. doi: 10.1111/j.1365-2958.2011.07861.x. Epub 2011 Oct 18.

12.

Sulfolobus mutants, generated via PCR products, which lack putative enzymes of UV photoproduct repair.

Sakofsky CJ, Runck LA, Grogan DW.

Archaea. 2011;2011:864015. doi: 10.1155/2011/864015. Epub 2011 Jul 7.

13.

Discontinuity and limited linkage in the homologous recombination system of a hyperthermophilic archaeon.

Grogan DW, Rockwood J.

J Bacteriol. 2010 Sep;192(18):4660-8. doi: 10.1128/JB.00447-10. Epub 2010 Jul 19.

14.

Homologous recombination in Sulfolobus acidocaldarius: genetic assays and functional properties.

Grogan DW.

Biochem Soc Trans. 2009 Feb;37(Pt 1):88-91. doi: 10.1042/BST0370088. Review.

PMID:
19143608
15.

The rate and character of spontaneous mutation in Thermus thermophilus.

Mackwan RR, Carver GT, Kissling GE, Drake JW, Grogan DW.

Genetics. 2008 Sep;180(1):17-25. doi: 10.1534/genetics.108.089086. Epub 2008 Aug 24.

16.
17.

Variation in gene content among geographically diverse Sulfolobus isolates.

Grogan DW, Ozarzak MA, Bernander R.

Environ Microbiol. 2008 Jan;10(1):137-46. Epub 2007 Sep 11.

PMID:
17850334
18.

An unusual pattern of spontaneous mutations recovered in the halophilic archaeon Haloferax volcanii.

Mackwan RR, Carver GT, Drake JW, Grogan DW.

Genetics. 2007 May;176(1):697-702. Epub 2006 Dec 28.

19.

Homologous recombination of exogenous DNA with the Sulfolobus acidocaldarius genome: properties and uses.

Kurosawa N, Grogan DW.

FEMS Microbiol Lett. 2005 Dec 1;253(1):141-9. Epub 2005 Oct 11.

20.

Recombination shapes the natural population structure of the hyperthermophilic archaeon Sulfolobus islandicus.

Whitaker RJ, Grogan DW, Taylor JW.

Mol Biol Evol. 2005 Dec;22(12):2354-61. Epub 2005 Aug 10.

PMID:
16093568
21.
23.

New insertion sequences of Sulfolobus: functional properties and implications for genome evolution in hyperthermophilic archaea.

Blount ZD, Grogan DW.

Mol Microbiol. 2005 Jan;55(1):312-25. Erratum in: Mol Microbiol. 2005 Apr;56(1):298.

24.

Stability and repair of DNA in hyperthermophilic Archaea.

Grogan DW.

Curr Issues Mol Biol. 2004 Jul;6(2):137-44. Review.

25.

Geographic barriers isolate endemic populations of hyperthermophilic archaea.

Whitaker RJ, Grogan DW, Taylor JW.

Science. 2003 Aug 15;301(5635):976-8. Epub 2003 Jul 24.

27.
28.

Biological effects of DNA damage in the hyperthermophilic archaeon Sulfolobus acidocaldarius.

Reilly MS, Grogan DW.

FEMS Microbiol Lett. 2002 Feb 19;208(1):29-34.

29.

Genetic fidelity under harsh conditions: analysis of spontaneous mutation in the thermoacidophilic archaeon Sulfolobus acidocaldarius.

Grogan DW, Carver GT, Drake JW.

Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7928-33. Epub 2001 Jun 26.

30.
31.

The question of DNA repair in hyperthermophilic archaea.

Grogan DW.

Trends Microbiol. 2000 Apr;8(4):180-5. Review.

PMID:
10754577
32.
34.

Hyperthermophiles and the problem of DNA instability.

Grogan DW.

Mol Microbiol. 1998 Jun;28(6):1043-9. Review.

35.
36.

Cyclopropane ring formation in membrane lipids of bacteria.

Grogan DW, Cronan JE Jr.

Microbiol Mol Biol Rev. 1997 Dec;61(4):429-41. Review.

37.
38.

Rates of spontaneous mutation in an archaeon from geothermal environments.

Jacobs KL, Grogan DW.

J Bacteriol. 1997 May;179(10):3298-303.

40.
41.
46.
48.
49.
50.

Cyclopropane fatty acid synthase from Escherichia coli.

Taylor FR, Grogan DW, Cronan JE Jr.

Methods Enzymol. 1981;71 Pt C:133-9. No abstract available.

PMID:
7024727

Supplemental Content

Loading ...
Support Center