Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 16

1.

Range, routing and kinetics of rod signaling in primate retina.

Grimes WN, Baudin J, Azevedo AW, Rieke F.

Elife. 2018 Oct 9;7. pii: e38281. doi: 10.7554/eLife.38281.

2.

Parallel Processing of Rod and Cone Signals: Retinal Function and Human Perception.

Grimes WN, Songco-Aguas A, Rieke F.

Annu Rev Vis Sci. 2018 Sep 15;4:123-141. doi: 10.1146/annurev-vision-091517-034055. Epub 2018 Jun 8. Review.

3.

Flexible Neural Hardware Supports Dynamic Computations in Retina.

Rivlin-Etzion M, Grimes WN, Rieke F.

Trends Neurosci. 2018 Apr;41(4):224-237. doi: 10.1016/j.tins.2018.01.009. Epub 2018 Feb 14. Review.

4.

Stimulation of functional neuronal regeneration from Müller glia in adult mice.

Jorstad NL, Wilken MS, Grimes WN, Wohl SG, VandenBosch LS, Yoshimatsu T, Wong RO, Rieke F, Reh TA.

Nature. 2017 Aug 3;548(7665):103-107. doi: 10.1038/nature23283. Epub 2017 Jul 26.

5.

A simple retinal mechanism contributes to perceptual interactions between rod- and cone-mediated responses in primates.

Grimes WN, Graves LR, Summers MT, Rieke F.

Elife. 2015 Jun 22;4. doi: 10.7554/eLife.08033.

6.

Complex inhibitory microcircuitry regulates retinal signaling near visual threshold.

Grimes WN, Zhang J, Tian H, Graydon CW, Hoon M, Rieke F, Diamond JS.

J Neurophysiol. 2015 Jul;114(1):341-53. doi: 10.1152/jn.00017.2015. Epub 2015 May 13.

7.

Cross-synaptic synchrony and transmission of signal and noise across the mouse retina.

Grimes WN, Hoon M, Briggman KL, Wong RO, Rieke F.

Elife. 2014 Sep 1;3:e03892. doi: 10.7554/eLife.03892.

8.

Specialized postsynaptic morphology enhances neurotransmitter dilution and high-frequency signaling at an auditory synapse.

Graydon CW, Cho S, Diamond JS, Kachar B, von Gersdorff H, Grimes WN.

J Neurosci. 2014 Jun 11;34(24):8358-72. doi: 10.1523/JNEUROSCI.4493-13.2014.

9.

The synaptic and circuit mechanisms underlying a change in spatial encoding in the retina.

Grimes WN, Schwartz GW, Rieke F.

Neuron. 2014 Apr 16;82(2):460-73. doi: 10.1016/j.neuron.2014.02.037.

10.

Amacrine cell-mediated input to bipolar cells: variations on a common mechanistic theme.

Grimes WN.

Vis Neurosci. 2012 Jan;29(1):41-9. doi: 10.1017/S0952523811000241. Review.

PMID:
22310371
11.

Genetic targeting and physiological features of VGLUT3+ amacrine cells.

Grimes WN, Seal RP, Oesch N, Edwards RH, Diamond JS.

Vis Neurosci. 2011 Sep;28(5):381-92. doi: 10.1017/S0952523811000290. Epub 2011 Aug 25.

12.

An expanding view of dynamic electrical coupling in the mammalian retina.

Cafaro J, Schwartz GW, Grimes WN.

J Physiol. 2011 May 1;589(Pt 9):2115-6. doi: 10.1113/jphysiol.2011.205740. No abstract available.

13.

Probing potassium channel function in vivo by intracellular delivery of antibodies in a rat model of retinal neurodegeneration.

Raz-Prag D, Grimes WN, Fariss RN, Vijayasarathy C, Campos MM, Bush RA, Diamond JS, Sieving PA.

Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12710-5. doi: 10.1073/pnas.0913472107. Epub 2010 Jun 28.

14.

Retinal parallel processors: more than 100 independent microcircuits operate within a single interneuron.

Grimes WN, Zhang J, Graydon CW, Kachar B, Diamond JS.

Neuron. 2010 Mar 25;65(6):873-85. doi: 10.1016/j.neuron.2010.02.028.

15.

Mechanisms underlying lateral GABAergic feedback onto rod bipolar cells in rat retina.

Chávez AE, Grimes WN, Diamond JS.

J Neurosci. 2010 Feb 10;30(6):2330-9. doi: 10.1523/JNEUROSCI.5574-09.2010.

16.

BK channels modulate pre- and postsynaptic signaling at reciprocal synapses in retina.

Grimes WN, Li W, Chávez AE, Diamond JS.

Nat Neurosci. 2009 May;12(5):585-92. doi: 10.1038/nn.2302. Epub 2009 Apr 12.

Supplemental Content

Loading ...
Support Center