Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 90

1.

Molecular Mechanism of TMEM16A Regulation: Role of CaMKII and PP1/PP2A.

Ayon RJ, Hawn MB, Aoun J, Wiwchar M, Forrest AS, Cunningham F, Singer CA, Valencik ML, Greenwood IA, Leblanc N.

Am J Physiol Cell Physiol. 2019 Aug 28. doi: 10.1152/ajpcell.00059.2018. [Epub ahead of print]

PMID:
31461344
2.

TMEM16A is implicated in the regulation of coronary flow and is altered in hypertension.

Askew Page HR, Dalsgaard T, Baldwin SN, Jepps TA, Povstyan O, Olesen SP, Greenwood IA.

Br J Pharmacol. 2019 Jun;176(11):1635-1648. doi: 10.1111/bph.14598. Epub 2019 Apr 11.

PMID:
30710335
3.

Interaction Between Pannexin 1 and Caveolin-1 in Smooth Muscle Can Regulate Blood Pressure.

DeLalio LJ, Keller AS, Chen J, Boyce AKJ, Artamonov MV, Askew-Page HR, Keller TCS 4th, Johnstone SR, Weaver RB, Good ME, Murphy SA, Best AK, Mintz EL, Penuela S, Greenwood IA, Machado RF, Somlyo AV, Swayne LA, Minshall RD, Isakson BE.

Arterioscler Thromb Vasc Biol. 2018 Sep;38(9):2065-2078. doi: 10.1161/ATVBAHA.118.311290.

4.

Investigating the Role of G Protein βγ in Kv7-Dependent Relaxations of the Rat Vasculature.

Stott JB, Barrese V, Suresh M, Masoodi S, Greenwood IA.

Arterioscler Thromb Vasc Biol. 2018 Sep;38(9):2091-2102. doi: 10.1161/ATVBAHA.118.311360.

5.

Angiotensin II Promotes KV7.4 Channels Degradation Through Reduced Interaction With HSP90 (Heat Shock Protein 90).

Barrese V, Stott JB, Figueiredo HB, Aubdool AA, Hobbs AJ, Jepps TA, McNeish AJ, Greenwood IA.

Hypertension. 2018 Jun;71(6):1091-1100. doi: 10.1161/HYPERTENSIONAHA.118.11116. Epub 2018 Apr 23.

6.

KCNQ-Encoded Potassium Channels as Therapeutic Targets.

Barrese V, Stott JB, Greenwood IA.

Annu Rev Pharmacol Toxicol. 2018 Jan 6;58:625-648. doi: 10.1146/annurev-pharmtox-010617-052912. Epub 2017 Oct 6. Review.

PMID:
28992433
7.

Proliferative Role of Kv11 Channels in Murine Arteries.

Barrese V, Cidad P, Yeung SY, López-López JR, McNeish AJ, Ohya S, Pérez-García MT, Greenwood IA.

Front Physiol. 2017 Jul 12;8:500. doi: 10.3389/fphys.2017.00500. eCollection 2017.

8.

Synergistic interplay of Gβγ and phosphatidylinositol 4,5-bisphosphate dictates Kv7.4 channel activity.

Povstyan OV, Barrese V, Stott JB, Greenwood IA.

Pflugers Arch. 2017 Feb;469(2):213-223. doi: 10.1007/s00424-016-1916-4. Epub 2016 Dec 15.

9.

Kv7 Channel Activation Underpins EPAC-Dependent Relaxations of Rat Arteries.

Stott JB, Barrese V, Greenwood IA.

Arterioscler Thromb Vasc Biol. 2016 Dec;36(12):2404-2411. Epub 2016 Oct 27.

10.

MicroRNA-153 targeting of KCNQ4 contributes to vascular dysfunction in hypertension.

Carr G, Barrese V, Stott JB, Povstyan OV, Jepps TA, Figueiredo HB, Zheng D, Jamshidi Y, Greenwood IA.

Cardiovasc Res. 2016 Nov 1;112(2):581-589. doi: 10.1093/cvr/cvw177.

11.

Molecular and functional characterization of Kv 7 channels in penile arteries and corpus cavernosum of healthy and metabolic syndrome rats.

Jepps TA, Olesen SP, Greenwood IA, Dalsgaard T.

Br J Pharmacol. 2016 May;173(9):1478-90. doi: 10.1111/bph.13444. Epub 2016 Feb 26.

12.

Expression and function of Kv7.4 channels in rat cardiac mitochondria: possible targets for cardioprotection.

Testai L, Barrese V, Soldovieri MV, Ambrosino P, Martelli A, Vinciguerra I, Miceli F, Greenwood IA, Curtis MJ, Breschi MC, Sisalli MJ, Scorziello A, Canduela MJ, Grandes P, Calderone V, Taglialatela M.

Cardiovasc Res. 2016 May 1;110(1):40-50. doi: 10.1093/cvr/cvv281. Epub 2015 Dec 29.

PMID:
26718475
13.

Fundamental role for the KCNE4 ancillary subunit in Kv7.4 regulation of arterial tone.

Jepps TA, Carr G, Lundegaard PR, Olesen SP, Greenwood IA.

J Physiol. 2015 Dec 15;593(24):5325-40. doi: 10.1113/JP271286. Epub 2015 Dec 7.

14.

Molecular and functional significance of Ca(2+)-activated Cl(-) channels in pulmonary arterial smooth muscle.

Leblanc N, Forrest AS, Ayon RJ, Wiwchar M, Angermann JE, Pritchard HA, Singer CA, Valencik ML, Britton F, Greenwood IA.

Pulm Circ. 2015 Jun;5(2):244-68. doi: 10.1086/680189. Review.

15.

Complex role of Kv7 channels in cGMP and cAMP-mediated relaxations.

Stott JB, Greenwood IA.

Channels (Austin). 2015;9(3):117-8. doi: 10.1080/19336950.2015.1046732. No abstract available.

16.

Protective role of Kv7 channels in oxygen and glucose deprivation-induced damage in rat caudate brain slices.

Barrese V, Taglialatela M, Greenwood IA, Davidson C.

J Cereb Blood Flow Metab. 2015 Oct;35(10):1593-600. doi: 10.1038/jcbfm.2015.83. Epub 2015 May 13.

17.

G-protein βγ subunits are positive regulators of Kv7.4 and native vascular Kv7 channel activity.

Stott JB, Povstyan OV, Carr G, Barrese V, Greenwood IA.

Proc Natl Acad Sci U S A. 2015 May 19;112(20):6497-502. doi: 10.1073/pnas.1418605112. Epub 2015 May 4.

18.

Contribution of Kv7 channels to natriuretic peptide mediated vasodilation in normal and hypertensive rats.

Stott JB, Barrese V, Jepps TA, Leighton EV, Greenwood IA.

Hypertension. 2015 Mar;65(3):676-82. doi: 10.1161/HYPERTENSIONAHA.114.04373. Epub 2014 Dec 29.

PMID:
25547342
19.

Vasorelaxant effects of novel Kv 7.4 channel enhancers ML213 and NS15370.

Jepps TA, Bentzen BH, Stott JB, Povstyan OV, Sivaloganathan K, Dalby-Brown W, Greenwood IA.

Br J Pharmacol. 2014 Oct;171(19):4413-24. doi: 10.1111/bph.12805. Epub 2014 Aug 14.

20.

Inhibitory role of phosphatidylinositol 4,5-bisphosphate on TMEM16A-encoded calcium-activated chloride channels in rat pulmonary artery.

Pritchard HA, Leblanc N, Albert AP, Greenwood IA.

Br J Pharmacol. 2014 Sep;171(18):4311-21. doi: 10.1111/bph.12778.

21.

Contribution of kv7.4/kv7.5 heteromers to intrinsic and calcitonin gene-related peptide-induced cerebral reactivity.

Chadha PS, Jepps TA, Carr G, Stott JB, Zhu HL, Cole WC, Greenwood IA.

Arterioscler Thromb Vasc Biol. 2014 Apr;34(4):887-93. doi: 10.1161/ATVBAHA.114.303405. Epub 2014 Feb 20.

PMID:
24558103
22.

K(V)7 potassium channels: a new therapeutic target in smooth muscle disorders.

Stott JB, Jepps TA, Greenwood IA.

Drug Discov Today. 2014 Apr;19(4):413-24. doi: 10.1016/j.drudis.2013.12.003. Epub 2013 Dec 12. Review.

PMID:
24333708
23.

Kv7 and Kv11 channels in myometrial regulation.

Greenwood IA, Tribe RM.

Exp Physiol. 2014 Mar;99(3):503-9. doi: 10.1113/expphysiol.2013.075754. Epub 2013 Oct 11. Review.

24.

Contribution of Kv7 channels to basal coronary flow and active response to ischemia.

Khanamiri S, Soltysinska E, Jepps TA, Bentzen BH, Chadha PS, Schmitt N, Greenwood IA, Olesen SP.

Hypertension. 2013 Dec;62(6):1090-7. doi: 10.1161/HYPERTENSIONAHA.113.01244. Epub 2013 Sep 30.

PMID:
24082059
25.

Effective contractile response to voltage-gated Na+ channels revealed by a channel activator.

Ho WS, Davis AJ, Chadha PS, Greenwood IA.

Am J Physiol Cell Physiol. 2013 Apr 15;304(8):C739-47. doi: 10.1152/ajpcell.00164.2012. Epub 2013 Jan 30.

26.

Increased TMEM16A-encoded calcium-activated chloride channel activity is associated with pulmonary hypertension.

Forrest AS, Joyce TC, Huebner ML, Ayon RJ, Wiwchar M, Joyce J, Freitas N, Davis AJ, Ye L, Duan DD, Singer CA, Valencik ML, Greenwood IA, Leblanc N.

Am J Physiol Cell Physiol. 2012 Dec 15;303(12):C1229-43. doi: 10.1152/ajpcell.00044.2012. Epub 2012 Oct 3.

27.

Potent vasorelaxant activity of the TMEM16A inhibitor T16A(inh) -A01.

Davis AJ, Shi J, Pritchard HA, Chadha PS, Leblanc N, Vasilikostas G, Yao Z, Verkman AS, Albert AP, Greenwood IA.

Br J Pharmacol. 2013 Feb;168(3):773-84. doi: 10.1111/j.1476-5381.2012.02199.x.

28.

One man's side effect is another man's therapeutic opportunity: targeting Kv7 channels in smooth muscle disorders.

Jepps TA, Olesen SP, Greenwood IA.

Br J Pharmacol. 2013 Jan;168(1):19-27. doi: 10.1111/j.1476-5381.2012.02133.x. Review.

29.

Resident phenotypically modulated vascular smooth muscle cells in healthy human arteries.

Harhun MI, Huggins CL, Ratnasingham K, Raje D, Moss RF, Szewczyk K, Vasilikostas G, Greenwood IA, Khong TK, Wan A, Reddy M.

J Cell Mol Med. 2012 Nov;16(11):2802-12. doi: 10.1111/j.1582-4934.2012.01609.x.

30.

Activation of Ca2+-activated Cl- channels by store-operated Ca2+ entry in arterial smooth muscle cells does not require reverse-mode Na+/Ca2+ exchange.

Angermann JE, Forrest AS, Greenwood IA, Leblanc N.

Can J Physiol Pharmacol. 2012 Jul;90(7):903-21. doi: 10.1139/y2012-081. Epub 2012 Jun 26.

PMID:
22734601
31.

Reduced KCNQ4-encoded voltage-dependent potassium channel activity underlies impaired β-adrenoceptor-mediated relaxation of renal arteries in hypertension.

Chadha PS, Zunke F, Zhu HL, Davis AJ, Jepps TA, Olesen SP, Cole WC, Moffatt JD, Greenwood IA.

Hypertension. 2012 Apr;59(4):877-84. doi: 10.1161/HYPERTENSIONAHA.111.187427. Epub 2012 Feb 21.

PMID:
22353613
32.

Pharmacological dissection of K(v)7.1 channels in systemic and pulmonary arteries.

Chadha PS, Zunke F, Davis AJ, Jepps TA, Linders JT, Schwake M, Towart R, Greenwood IA.

Br J Pharmacol. 2012 Jun;166(4):1377-87. doi: 10.1111/j.1476-5381.2012.01863.x.

33.

Intricate vascular architecture revealed after removing the scaffolding: PSD95 crucial for vascular Kv1 function.

Greenwood IA.

J Physiol. 2011 Dec 15;589(Pt 24):5901. doi: 10.1113/jphysiol.2011.220202. No abstract available.

34.

Downregulation of Kv7.4 channel activity in primary and secondary hypertension.

Jepps TA, Chadha PS, Davis AJ, Harhun MI, Cockerill GW, Olesen SP, Hansen RS, Greenwood IA.

Circulation. 2011 Aug 2;124(5):602-11. doi: 10.1161/CIRCULATIONAHA.111.032136. Epub 2011 Jul 11.

PMID:
21747056
35.

Novel expression and regulation of voltage-dependent potassium channels in placentas from women with preeclampsia.

Mistry HD, McCallum LA, Kurlak LO, Greenwood IA, Broughton Pipkin F, Tribe RM.

Hypertension. 2011 Sep;58(3):497-504. doi: 10.1161/HYPERTENSIONAHA.111.173740. Epub 2011 Jul 5.

PMID:
21730298
36.

Letter to the editor re Mani et al.

Chadha PS, Greenwood IA, Zhong XZ, Cole WC.

Br J Pharmacol. 2011 Sep;164(2):250-1; author reply 252-3. doi: 10.1111/j.1476-5381.2011.01454.x. No abstract available.

37.

Expression and function of the K+ channel KCNQ genes in human arteries.

Ng FL, Davis AJ, Jepps TA, Harhun MI, Yeung SY, Wan A, Reddy M, Melville D, Nardi A, Khong TK, Greenwood IA.

Br J Pharmacol. 2011 Jan;162(1):42-53. doi: 10.1111/j.1476-5381.2010.01027.x.

38.

Expression profile and protein translation of TMEM16A in murine smooth muscle.

Davis AJ, Forrest AS, Jepps TA, Valencik ML, Wiwchar M, Singer CA, Sones WR, Greenwood IA, Leblanc N.

Am J Physiol Cell Physiol. 2010 Nov;299(5):C948-59. doi: 10.1152/ajpcell.00018.2010. Epub 2010 Aug 4.

39.

Participation of KCNQ (Kv7) potassium channels in myogenic control of cerebral arterial diameter.

Zhong XZ, Harhun MI, Olesen SP, Ohya S, Moffatt JD, Cole WC, Greenwood IA.

J Physiol. 2010 Sep 1;588(Pt 17):3277-93. doi: 10.1113/jphysiol.2010.192823. Epub 2010 Jul 12.

40.

Intricate interaction between store-operated calcium entry and calcium-activated chloride channels in pulmonary artery smooth muscle cells.

Forrest AS, Angermann JE, Raghunathan R, Lachendro C, Greenwood IA, Leblanc N.

Adv Exp Med Biol. 2010;661:31-55. doi: 10.1007/978-1-60761-500-2_3.

PMID:
20204722
41.

Cholesterol depletion alters amplitude and pharmacology of vascular calcium-activated chloride channels.

Sones WR, Davis AJ, Leblanc N, Greenwood IA.

Cardiovasc Res. 2010 Aug 1;87(3):476-84. doi: 10.1093/cvr/cvq057. Epub 2010 Feb 18.

42.

The contribution of Kv7 channels to pregnant mouse and human myometrial contractility.

McCallum LA, Pierce SL, England SK, Greenwood IA, Tribe RM.

J Cell Mol Med. 2011 Mar;15(3):577-86. doi: 10.1111/j.1582-4934.2010.01021.x.

43.

Phosphorylation alters the pharmacology of Ca(2+)-activated Cl channels in rabbit pulmonary arterial smooth muscle cells.

Wiwchar M, Ayon R, Greenwood IA, Leblanc N.

Br J Pharmacol. 2009 Nov;158(5):1356-65. doi: 10.1111/j.1476-5381.2009.00405.x. Epub 2009 Sep 28.

44.

Complex phosphatase regulation of Ca2+-activated Cl- currents in pulmonary arterial smooth muscle cells.

Ayon R, Sones W, Forrest AS, Wiwchar M, Valencik ML, Sanguinetti AR, Perrino BA, Greenwood IA, Leblanc N.

J Biol Chem. 2009 Nov 20;284(47):32507-21. doi: 10.1074/jbc.M109.050401. Epub 2009 Sep 18.

45.

New tricks for old dogs: KCNQ expression and role in smooth muscle.

Greenwood IA, Ohya S.

Br J Pharmacol. 2009 Apr;156(8):1196-203. doi: 10.1111/j.1476-5381.2009.00131.x. Review.

46.

Inhibition of vascular calcium-gated chloride currents by blockers of KCa1.1, but not by modulators of KCa2.1 or KCa2.3 channels.

Sones WR, Leblanc N, Greenwood IA.

Br J Pharmacol. 2009 Sep;158(2):521-31. doi: 10.1111/j.1476-5381.2009.00332.x. Epub 2009 Jul 23.

47.

Molecular and functional characterization of Kv7 K+ channel in murine gastrointestinal smooth muscles.

Jepps TA, Greenwood IA, Moffatt JD, Sanders KM, Ohya S.

Am J Physiol Gastrointest Liver Physiol. 2009 Jul;297(1):G107-15. doi: 10.1152/ajpgi.00057.2009. Epub 2009 Apr 23.

48.

Loss of functional K+ channels encoded by ether-à-go-go-related genes in mouse myometrium prior to labour onset.

Greenwood IA, Yeung SY, Tribe RM, Ohya S.

J Physiol. 2009 May 15;587(Pt 10):2313-26. doi: 10.1113/jphysiol.2009.171272. Epub 2009 Mar 30.

49.

Simply the best?: identity of vascular cGMP-dependent Cl- current revealed.

Greenwood IA.

Circ Res. 2008 Oct 10;103(8):782-3. doi: 10.1161/CIRCRESAHA.108.186478. No abstract available.

PMID:
18845817
50.

Expression and function of K(v)7 channels in murine myometrium throughout oestrous cycle.

McCallum LA, Greenwood IA, Tribe RM.

Pflugers Arch. 2009 Mar;457(5):1111-20. doi: 10.1007/s00424-008-0567-5. Epub 2008 Aug 16.

PMID:
18709386

Supplemental Content

Loading ...
Support Center