Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 88

1.

CDK12 loss in cancer cells affects DNA damage response genes through premature cleavage and polyadenylation.

Krajewska M, Dries R, Grassetti AV, Dust S, Gao Y, Huang H, Sharma B, Day DS, Kwiatkowski N, Pomaville M, Dodd O, Chipumuro E, Zhang T, Greenleaf AL, Yuan GC, Gray NS, Young RA, Geyer M, Gerber SA, George RE.

Nat Commun. 2019 Apr 15;10(1):1757. doi: 10.1038/s41467-019-09703-y.

2.

Human CDK12 and CDK13, multi-tasking CTD kinases for the new millenium.

Greenleaf AL.

Transcription. 2019 Apr;10(2):91-110. doi: 10.1080/21541264.2018.1535211. Epub 2018 Oct 22. Review.

PMID:
30319007
3.

Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors.

Zhang T, Kwiatkowski N, Olson CM, Dixon-Clarke SE, Abraham BJ, Greifenberg AK, Ficarro SB, Elkins JM, Liang Y, Hannett NM, Manz T, Hao M, Bartkowiak B, Greenleaf AL, Marto JA, Geyer M, Bullock AN, Young RA, Gray NS.

Nat Chem Biol. 2016 Oct;12(10):876-84. doi: 10.1038/nchembio.2166. Epub 2016 Aug 29.

4.

Engineering an analog-sensitive CDK12 cell line using CRISPR/Cas.

Bartkowiak B, Yan C, Greenleaf AL.

Biochim Biophys Acta. 2015 Sep;1849(9):1179-87. doi: 10.1016/j.bbagrm.2015.07.010. Epub 2015 Jul 17.

5.

Expression, purification, and identification of associated proteins of the full-length hCDK12/CyclinK complex.

Bartkowiak B, Greenleaf AL.

J Biol Chem. 2015 Jan 16;290(3):1786-95. doi: 10.1074/jbc.M114.612226. Epub 2014 Nov 26.

6.

A DNA damage response system associated with the phosphoCTD of elongating RNA polymerase II.

Winsor TS, Bartkowiak B, Bennett CB, Greenleaf AL.

PLoS One. 2013 Apr 16;8(4):e60909. doi: 10.1371/journal.pone.0060909. Print 2013.

7.
8.

Proteomic analysis of mitotic RNA polymerase II reveals novel interactors and association with proteins dysfunctional in disease.

Möller A, Xie SQ, Hosp F, Lang B, Phatnani HP, James S, Ramirez F, Collin GB, Naggert JK, Babu MM, Greenleaf AL, Selbach M, Pombo A.

Mol Cell Proteomics. 2012 Jun;11(6):M111.011767. doi: 10.1074/mcp.M111.011767. Epub 2011 Dec 22.

9.

Cotranscriptional association of mRNA export factor Yra1 with C-terminal domain of RNA polymerase II.

MacKellar AL, Greenleaf AL.

J Biol Chem. 2011 Oct 21;286(42):36385-95. doi: 10.1074/jbc.M111.268144. Epub 2011 Aug 19.

10.

Phosphorylation of RNAPII: To P-TEFb or not to P-TEFb?

Bartkowiak B, Greenleaf AL.

Transcription. 2011 May;2(3):115-119.

11.

Updating the CTD Story: From Tail to Epic.

Bartkowiak B, Mackellar AL, Greenleaf AL.

Genet Res Int. 2011;2011:623718. doi: 10.4061/2011/623718. Epub 2011 Oct 15.

12.

cis-Proline-mediated Ser(P)5 dephosphorylation by the RNA polymerase II C-terminal domain phosphatase Ssu72.

Werner-Allen JW, Lee CJ, Liu P, Nicely NI, Wang S, Greenleaf AL, Zhou P.

J Biol Chem. 2011 Feb 18;286(7):5717-26. doi: 10.1074/jbc.M110.197129. Epub 2010 Dec 15.

13.

CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1.

Bartkowiak B, Liu P, Phatnani HP, Fuda NJ, Cooper JJ, Price DH, Adelman K, Lis JT, Greenleaf AL.

Genes Dev. 2010 Oct 15;24(20):2303-16. doi: 10.1101/gad.1968210.

14.

RECQ5 helicase associates with the C-terminal repeat domain of RNA polymerase II during productive elongation phase of transcription.

Kanagaraj R, Huehn D, MacKellar A, Menigatti M, Zheng L, Urban V, Shevelev I, Greenleaf AL, Janscak P.

Nucleic Acids Res. 2010 Dec;38(22):8131-40. doi: 10.1093/nar/gkq697. Epub 2010 Aug 12.

15.

Role of cannabinoid receptor type 1 desensitization in greater tetrahydrocannabinol impairment of memory in adolescent rats.

Moore NL, Greenleaf AL, Acheson SK, Wilson WA, Swartzwelder HS, Kuhn CM.

J Pharmacol Exp Ther. 2010 Nov;335(2):294-301. doi: 10.1124/jpet.110.169359. Epub 2010 Jul 28.

16.

Genetic organization, length conservation, and evolution of RNA polymerase II carboxyl-terminal domain.

Liu P, Kenney JM, Stiller JW, Greenleaf AL.

Mol Biol Evol. 2010 Nov;27(11):2628-41. doi: 10.1093/molbev/msq151. Epub 2010 Jun 17.

17.

The phosphoCTD-interacting domain of Topoisomerase I.

Wu J, Phatnani HP, Hsieh TS, Greenleaf AL.

Biochem Biophys Res Commun. 2010 Jun 18;397(1):117-9. doi: 10.1016/j.bbrc.2010.05.081. Epub 2010 May 20.

18.

Comparative genome-wide screening identifies a conserved doxorubicin repair network that is diploid specific in Saccharomyces cerevisiae.

Westmoreland TJ, Wickramasekara SM, Guo AY, Selim AL, Winsor TS, Greenleaf AL, Blackwell KL, Olson JA Jr, Marks JR, Bennett CB.

PLoS One. 2009 Jun 8;4(6):e5830. doi: 10.1371/journal.pone.0005830.

19.

The essential sequence elements required for RNAP II carboxyl-terminal domain function in yeast and their evolutionary conservation.

Liu P, Greenleaf AL, Stiller JW.

Mol Biol Evol. 2008 Apr;25(4):719-27. doi: 10.1093/molbev/msn017. Epub 2008 Jan 21.

PMID:
18209193
20.

Yeast screens identify the RNA polymerase II CTD and SPT5 as relevant targets of BRCA1 interaction.

Bennett CB, Westmoreland TJ, Verrier CS, Blanchette CA, Sabin TL, Phatnani HP, Mishina YV, Huper G, Selim AL, Madison ER, Bailey DD, Falae AI, Galli A, Olson JA, Greenleaf AL, Marks JR.

PLoS One. 2008 Jan 16;3(1):e1448. doi: 10.1371/journal.pone.0001448.

21.

Phosphorylation and functions of the RNA polymerase II CTD.

Phatnani HP, Greenleaf AL.

Genes Dev. 2006 Nov 1;20(21):2922-36. Review.

22.

NMR assignment of the SRI domain of human Set2/HYPB.

Li M, Phatnani HP, Greenleaf AL, Zhou P.

J Biomol NMR. 2006;36 Suppl 1:5. No abstract available.

PMID:
16435090
23.

Solution structure of the Set2-Rpb1 interacting domain of human Set2 and its interaction with the hyperphosphorylated C-terminal domain of Rpb1.

Li M, Phatnani HP, Guan Z, Sage H, Greenleaf AL, Zhou P.

Proc Natl Acad Sci U S A. 2005 Dec 6;102(49):17636-41. Epub 2005 Nov 28.

24.

A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation.

Kizer KO, Phatnani HP, Shibata Y, Hall H, Greenleaf AL, Strahl BD.

Mol Cell Biol. 2005 Apr;25(8):3305-16.

25.
26.

C-terminal repeat domain kinase I phosphorylates Ser2 and Ser5 of RNA polymerase II C-terminal domain repeats.

Jones JC, Phatnani HP, Haystead TA, MacDonald JA, Alam SM, Greenleaf AL.

J Biol Chem. 2004 Jun 11;279(24):24957-64. Epub 2004 Mar 26.

27.

Identifying phosphoCTD-associating proteins.

Phatnani HP, Greenleaf AL.

Methods Mol Biol. 2004;257:17-28.

PMID:
14769993
30.

Co-transcriptional splicing of pre-messenger RNAs: considerations for the mechanism of alternative splicing.

Goldstrohm AC, Greenleaf AL, Garcia-Blanco MA.

Gene. 2001 Oct 17;277(1-2):31-47. Review.

PMID:
11602343
31.

Phosphorylation of RNA polymerase II CTD fragments results in tight binding to the WW domain from the yeast prolyl isomerase Ess1.

Myers JK, Morris DP, Greenleaf AL, Oas TG.

Biochemistry. 2001 Jul 24;40(29):8479-86.

PMID:
11456485
32.

Juglone, an inhibitor of the peptidyl-prolyl isomerase Pin1, also directly blocks transcription.

Chao SH, Greenleaf AL, Price DH.

Nucleic Acids Res. 2001 Feb 1;29(3):767-73.

33.
34.

Protein-interaction modules that organize nuclear function: FF domains of CA150 bind the phosphoCTD of RNA polymerase II.

Carty SM, Goldstrohm AC, Suñé C, Garcia-Blanco MA, Greenleaf AL.

Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9015-20.

35.

Kin28, the TFIIH-associated carboxy-terminal domain kinase, facilitates the recruitment of mRNA processing machinery to RNA polymerase II.

Rodriguez CR, Cho EJ, Keogh MC, Moore CL, Greenleaf AL, Buratowski S.

Mol Cell Biol. 2000 Jan;20(1):104-12.

36.

Phospho-carboxyl-terminal domain binding and the role of a prolyl isomerase in pre-mRNA 3'-End formation.

Morris DP, Phatnani HP, Greenleaf AL.

J Biol Chem. 1999 Oct 29;274(44):31583-7.

37.

Heat-shock-specific phosphorylation and transcriptional activity of RNA polymerase II.

Egyházi E, Ossoinak A, Lee JM, Greenleaf AL, Mäkelä TP, Pigon A.

Exp Cell Res. 1998 Jul 10;242(1):211-21.

PMID:
9665818
38.

Protonation of the neutral repeats of the RNA polymerase II CTD.

Morris DP, Stevens RD, Greenleaf AL.

Biochem Biophys Res Commun. 1998 Apr 7;245(1):53-8.

PMID:
9535782
39.

Assaying CTD kinases in vitro and phosphorylation-modulated properties of RNA polymerase II in vivo.

Morris DP, Lee JM, Sterner DE, Brickey WJ, Greenleaf AL.

Methods. 1997 Jul;12(3):264-75. Review.

PMID:
9237170
40.
41.
42.

Drosophila RNA polymerase II mutants that affect transcription elongation.

Chen Y, Chafin D, Price DH, Greenleaf AL.

J Biol Chem. 1996 Mar 15;271(11):5993-9.

43.

Phosphorylation dependence of the initiation of productive transcription of Balbiani ring 2 genes in living cells.

Egyházi E, Ossoinak A, Pigon A, Holmgren C, Lee JM, Greenleaf AL.

Chromosoma. 1996 Mar;104(6):422-33.

PMID:
8601337
44.

The yeast carboxyl-terminal repeat domain kinase CTDK-I is a divergent cyclin-cyclin-dependent kinase complex.

Sterner DE, Lee JM, Hardin SE, Greenleaf AL.

Mol Cell Biol. 1995 Oct;15(10):5716-24.

45.
46.
47.
48.

A positive addition to a negative tail's tale.

Greenleaf AL.

Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10896-7. Review. No abstract available.

Supplemental Content

Loading ...
Support Center